An efficient orthogonal grid drawing algorithm for cubic graphs

  • Tiziana Calamoneri
  • Rossella Petreschi
Session 1B: Graph Drawing
Part of the Lecture Notes in Computer Science book series (LNCS, volume 959)


In this paper we present a new algorithm that constructs an orthogonal drawing of a graph G with degree at most three. Even if we do not require any limitations neither to planar nor to biconnected graphs, we reach the best known results in the literarture: each edge has at most 1 bend, the total number of bends is ≤ n/2+1, and the area is ≤(n/2−1)2.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aho, A., Hopcroft, J. K. Ullman, J. D.: The design and analysis of computer algorithms. Addison Wesley, Reading,MA, (1973)Google Scholar
  2. 2.
    Biedl, T., Kant, G.: A Better Euristic for Orthogonal Graph Drawings. Algorithms — ESA '94. Proceedings, Lectures Notes in Computer Science, Springer-Verlag 855 (1994) 24–35Google Scholar
  3. 3.
    Bjorken, J.D., Drell, S.D.: Quantum Electrodynamics. Mc-Graw HillGoogle Scholar
  4. 4.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to algorithms. the MIT Press, Cambridge,MA, (1990)Google Scholar
  5. 5.
    Di Battista, G., Liotta, G., Vargiu, F.: Spirality of Orthogonal Representations and Optimal Drawings of Series-Parallel Graphs and 3-Planar Graphs. Lectures Notes in Computer Science, Springer-Verlag 709 (1993) 151–162Google Scholar
  6. 6.
    Greenlaw, R., Petreschi, R.: Cubic graphs, Tech. Rep. University of New Hampshire, Durham,N.H.,USA 15 (1993)Google Scholar
  7. 7.
    Kant, G.: Drawing Planar Graphs Using the canonical ordering. Algorithmica — Special Issue on Graph Drawing (to appear)Google Scholar
  8. 8.
    Liu, Y. Marchioro, P., Petreschi, R.: At most single bend embedding of cubic graphs. Applied Mathematics (Chin. Journ.) 9/B/2 (1994) 127–142Google Scholar
  9. 9.
    Papakostas, A., Tollis, I.G.: Improved Algorithms and Bounds for Orthogonal Drawings. Proc.Graph Drawing '94, Lectures Notes in Computer Science, Springer-Verlag 894 (1994) 40–51Google Scholar
  10. 10.
    Preparata, F.P., Vuillemin, J.: The Cube-Connected Cycles: A Versatile Network for Parallel Computation. Communications of ACM 24/5 (1981) 300–309CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Tiziana Calamoneri
    • 1
  • Rossella Petreschi
    • 1
  1. 1.Dept. of Computer ScienceUniversity of Rome “La Sapienza”RomaItaly

Personalised recommendations