Skip to main content

Application of odor sensors in mobile robotics

  • Part One Sensors And Navigation
  • Conference paper
  • First Online:
Autonomous Robotic Systems

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 236))

Abstract

Animals that have a rather small number of neurons, like insects, display a diversity of instinctive behaviours strictly correlated with particular sensory information. The diversity of behaviors observed in insects has been shaped by millions of years of biological evolution, so that their strategies must be efficient and adaptive to circumstances which change every moment. Many insects use olfaction as a navigation aid for some vital tasks as searching for sources of food, a sexual partner or a good place for oviposition.

This paper discusses the utilisation of olfactive information as a navigational aid in mobile robots. The main technologies used for chemical sensing and their current utilisation on robotics is presented. The article concludes giving clues for potential utilisation of electronic noses associated to mobile robots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kanzaki R 1996 Behavioral and neural basis of instictive behavior in insects: Odor-source searching strategies without memory and learning. Robotics and Autonomous Systems, 18:33–43

    Article  Google Scholar 

  2. Ishida H, Hayashi H, Takakusaki M, Nakamoto T, Moriizumi T, Kanzaki R 1996 odour-source localization system mimicking behaviour of silkworm moth. Sensors and Actuators, A99:225–230

    Google Scholar 

  3. Sudd J 1967 An Introduction to the Behavior of Ants. Arnold Publishers

    Google Scholar 

  4. Moseley P 1997 Solid state gas sensors. Measurement Science and Technology, 8:223–237

    Article  Google Scholar 

  5. Gardner J 1994 Microsensors, Principles and Applications. John Wiley & Sons

    Google Scholar 

  6. Göpel W, Jones T, Kleitz M, Lundstrom J, Seiyama T (eds) 1991 Sensors: A Comprehensive Survey, vol. 2. Weinheim: VCH

    Google Scholar 

  7. Göpel W, Jones T, Kleitz M, Lundstrom J, Seiyama T (eds) 1992 Sensors: A Comprehensive Survey, vol. 3. Weinheim: VCH

    Google Scholar 

  8. Moseley P, Tofield B (eds) 1987 Solid State Gas Sensors. Adam Hilger

    Google Scholar 

  9. Moseley P, Norris J, Williams D (eds) 1991 Techniques and Mechanisms in Gas Sensing. Adam Hilger

    Google Scholar 

  10. Lambrechts M, Sansen W (eds) 1992 Biosensors: Microelectrochemical Devices. Adam Hilger

    Google Scholar 

  11. Jones E 1987 The Pellistor Catalytic Gas Detector. In: Moseley P, Tofield B (eds), Solid State Gas Sensors, Adam Hilger, pp 17–31

    Google Scholar 

  12. Nieuwenhuizen M, Nederlof A 1992 Silicon Based Surface Acoustic Wave Gas Sensors. In: Gardner J, Bartlett P (eds), Sensors and Sensory Systems for an Electronic Nose, Kluwer Academic Publisher, vol. E212 of NATO ASI Series, pp 131–145

    Google Scholar 

  13. Bartlett P, Archer P, Ling-Chung S 1989 Conducting polymer gas sensors, Part I: Fabrication and characterization. Sensors and Actuators, 19:125–140

    Article  Google Scholar 

  14. Persaud K, Pelosi P 1992 Sensor Arrays using Conducting Polymers for an Artificial Nose. In: Gardner J, Bartlett P (eds), Sensors and Sensory Systems for an Electronic Nose, Kluwer Academic Publisher, vol. E212 of NATO ASI Series, pp 237–256

    Google Scholar 

  15. Dickinson J, White J, Kauer J, Walt D 1996 A chemical-detecting system based on a cross reactive optical sensor array. Nature, 382:697–700

    Article  PubMed  Google Scholar 

  16. Morrison S March 1991 Semiconducting-Oxide Chemical Sensors. IEEE Circuits Devices Mag, 7:32–35

    Article  Google Scholar 

  17. Ihokura K, Watson J 1994 The Stannic Oxide Gas Sensor. CRC Press

    Google Scholar 

  18. Horner G, Hierold C 1990 Gas analysis by partial model building. Sensors and Actuators, B2:173–184

    Google Scholar 

  19. Bernhardt K, Fleischer M, Meixner H 1995 Innovative sensor materials open up new markets. Siemens Components, XXX:35–37

    Google Scholar 

  20. Bernhardt K 1996 Gas sensors of gallium oxide. Siemens Components, XXXI:28–30

    Google Scholar 

  21. Persaud K, Dodd G 1982 Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature, 299:352–355

    Article  PubMed  Google Scholar 

  22. Keller P E, Kangas L J, Liden L H, Hashem S, Kouzes R T 1995 Electronic Noses and Their Applications. In: IEEE Northcon/Technical Applications Conference

    Google Scholar 

  23. Hambraeus G 1997 Sensors and electronic noses. New Nordic Technology, 3:15–19

    Google Scholar 

  24. Byfield M, May I 1996 Olfactory Sensor Array Systems: The Electronic Nose. GEC Journal of Research, 13:17–27

    Google Scholar 

  25. Bourrounet B, Talou T, Gaset A 1995 Application of a multi-gas-sensor device in the meat industry for boar-taint detection. Sensors and Actuators, B27:250–254

    Google Scholar 

  26. Shurmer H, Gardner J 1992 Odour discrimination with an electronic nose. Sensors and Actuators, B8:1–11

    Google Scholar 

  27. Matsuoka H, Dousaki S, Sera K, Shinohara A, Ishii H 1991 Development of quantitative odor supplier for a plant leaf sensor system. Sensors and Actuators, B5:129–133

    Google Scholar 

  28. Wang X, Fang J, Carey P, Yee S 1993 Mixture analysis of organic solvents using nonselective and nonlinear taguchi gas sensors with artificial neural networks. Sensors and Actuators, B13:455–457

    Google Scholar 

  29. Matsuoka H, Yamada Y, Dousaki S, Nemoto Y, Shinohara A, Satoh A 1993 Application of teflon particle column to an odor-sensing system. Sensors and Actuators, B13:358–361

    Google Scholar 

  30. Ide J, Nakamoto T, Moriizumi T 1993 Development of odour-sensing system using an auto-sampling stage. Sensors and Actuators, B13:351–354

    Google Scholar 

  31. Endres H, Jander H D, Göttler W 1995 A test system for gas sensors. Sensors and Actuators, B23:163–172

    Google Scholar 

  32. Holmberg M, Winquist F, Lunstr m I, Gardner J, Hines E 1995 Identification of papper quality using a hybrid electronic nose. Sensors and Actuators, B27:246–249

    Google Scholar 

  33. Gardner J, Bartlett P 1992 Pattern Recognition in Odour Sensing. In: Gardner J, Bartlett P (eds), Sensors and Sensory Systems for an Electronic Nose, Kluwer Academic Publisher, vol. E212 of NATO ASI Series, pp 161–179

    Google Scholar 

  34. Moore S, Gardner J, Hines E, Göpel W, Weimar U 1993 A modified multilayer perceptron model for gas mixture analysis. Sensors and Actuators, B16:344–348

    Google Scholar 

  35. Di Natale C, Davide F, D'Amico A 1995 Pattern recognition in gas sensing: well-stated techniques and advances. Sensors and Actuators, B23:111–118

    Google Scholar 

  36. Ping W, Jun X 1996 A novel recognition method for electronic nose using artificial neural network and fuzzy recognition. Sensors and Actuators, B37:169–174

    Google Scholar 

  37. Shurmer H 1990 Basic limitations for an electronic nose. Sensors and Actuators, B1:48–53

    Google Scholar 

  38. Bednarczyk D, DeWeerth S P 1995 Smart chemical sensing arrays using tin oxide sensors and analog winner-take-all signal processing. Sensors and Actuators, B27:271–274

    Google Scholar 

  39. Schweizer-Berberich M, Göppert J, Hierlemann A, et al. 1995 Application of neural network-system to the dynamic response of polymer-based sensor arrays. Sensors and Actuators, B27:232–236

    Google Scholar 

  40. Niebling G, Schlachter A 1995 Qualitative and quantitative gas analysis with non-linear interdigital sensor arrays and artificial neural networks. Sensors and Actuators, B27:289–292

    Google Scholar 

  41. Llobet E, Brezmes J, Vilanova X, Sueiras J, Correig X 1997 Qualitative and quantitative analysis of volatile organic compounds using transient and steady-state response of a thick-film tin oxide gas sensor array. Sensors and Actuators, B41:13–21

    Google Scholar 

  42. Ratton L, Kunt T, McAvoy T, Fuja T, Cavicchi R, Semancik S 1997 A comparative study of signal processing techniques for clustering microsensor data (a first step towards an artificial nose). Sensors and Actuators, B41:105–120

    Google Scholar 

  43. Engelberger J F 1989 Robotics in Service. MIT Press, Cambridge

    Google Scholar 

  44. Wong L, Takemori T, Siegel M 1989 Gas Identification System using Graded Temperature Sensor and Neural Net Interpretation. Tech. Rep. CMU-RI-TR-20-89, The Robotics Institute — Carnegie Mellon University

    Google Scholar 

  45. Siegel M 1990 Olfaction, Metal Oxide Semiconductor Gas Sensors and Neural Networks. In: Henderson T (ed), Traditional and Non-Traditional Robotic Sensors, Springer-Verlag, Berlin, vol. F63 of NATO ASI Series, pp 143–157

    Google Scholar 

  46. Deveza R, Thiel D, Russell A, Mackay-Sim A June 1994 Odor Sensing for Robot Guidance. International Journal of Robotics Research, 13:232–239

    Google Scholar 

  47. Russell A, Thiel D, Mackay-Sim A 1994 Sensing Odour Trails for Mobile Robot Navigation. In: Int. Conf. on Robotics and Automation, pp 2672–2677

    Google Scholar 

  48. Ishida H, Suetsugu K, Nakamoto T, Moriizumi T 1994 Study of autonomous mobile sensing system for localization of odor source using gas sensors and anemometric sensors. Sensors and Actuators, A45:153–157

    Google Scholar 

  49. Nakamoto T, Hishida H, Moriizumi T 1997 Active odor sensing system. In: Int. Symposium on Industrial Electronics, pp SS128–SS133

    Google Scholar 

  50. Walker J 1995 Minerats: Moore's Law in the Minefield. In: IEEE Asilomar Microprocessor Workshop

    Google Scholar 

  51. Maechler P 1995 Detection Technologies for Anti-Personnel Mines. In: Symposium on Autonomous Vehicles in Mine Countermeasures

    Google Scholar 

  52. McGoldrick P Dec 1996 Creative technologies seeking a solution to abandoned land mines: an impressive spread of hope and dignity. Electronic Design, pp 74–78

    Google Scholar 

  53. Mandow A, de Gabriel J G, Martínez J, Muñoz V, Ollero A, García-Cerezo A 1996 The Autonomous Mobile Robot AURORA for Greenhouse Operation. IEEE Robotics Automation Magazine, 3:18–28

    Article  Google Scholar 

  54. Russell R 1997 Heat trails as short-lived navigational markers for mobile robots. In: Int. Conf. on Robotics and Automation, pp 3534–3539

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Anibal T. de Almeida Oussama Khatib

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag London Limited

About this paper

Cite this paper

Marques, L., de Almeida, A.T. (1998). Application of odor sensors in mobile robotics. In: de Almeida, A.T., Khatib, O. (eds) Autonomous Robotic Systems. Lecture Notes in Control and Information Sciences, vol 236. Springer, London. https://doi.org/10.1007/BFb0030800

Download citation

  • DOI: https://doi.org/10.1007/BFb0030800

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-036-1

  • Online ISBN: 978-1-84628-530-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics