Genome halving

  • Nadia El-Mabrouk
  • Joseph H. Nadeau
  • David Sankoff
Session V
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1448)


Genome duplication is an important source of new gene functions and novel physiological pathways. In the course of evolution, the nucleotide sequences of duplicated genes tend to diverge through mutation, so that one copy loses function (becomes a pseudogene) or develops a new function, encoding a distinct but similar product. Originally a duplicated genome contains two identical copies of each chromosome, but through inversion or other intrachromosomal movement, the gene orders in each pair of chromosomes change independently, and through reciprocal translocation, parallel linkage patterns between the two copies are disrupted. Eventually, all that can be detected are several chromosome segments of greater or lesser length (blocks), each of which appears twice in the genome, containing many paralogous genes in parallel orders. The study of genome duplication based on block data includes the inference of the synteny or linkage structure of the pre-duplication genome, the nature of the post-duplication rearrangement events, and the statistics of gene loss versus functional divergence. We propose a suite of Genome halving problems for algorithmic solution, some of which address the evolution of gene order, and others which deal with relations of synteny only. We present an efficient and accurate heuristic for the latter type of problem, and apply it to the genome duplication which has been described for Saccharomyces cerevisiae.


Gene Order Genome Duplication Paralogous Gene Intersection Graph Reciprocal Translocation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahn, S., Tanksley, S.D.: Comparative linkage maps of rice and maize genomes. Proc. Natl. Acad. Sci. USA 90 (1993) 7980–7984.Google Scholar
  2. 2.
    Atkin, N. B., Ohno, S.: DNA values of four primitive chordates. Chromosoma 23 (1967) 10–13Google Scholar
  3. 3.
    Coissac, E., Maillier, E., Netter, P.: A comparative study of duplications in bacteria and eukaryotes: the importance of telomeres. Molecular Biology and Evolution 14 (1997) 1062–1074Google Scholar
  4. 4.
    DasGupta,B., Jiang, T., Kannan, S., Li, M., Sweedyk, Z.: On the complexity and approximation of syntenic distance. RECOMB 97. Proceedings of the First Annual International Conference on Computational Molecular Biology (1997) ACM Press, 99–108Google Scholar
  5. 5.
    Ferretti, V., Nadeau, J.H., Sankoff, D.: Original synteny. In Combinatorial Pattern Matching. Seventh Annual Symposium (D. Hirschberg and G Myers, ed.) Lecture Notes in Computer Science 1075 (1996) Springer Verlag, 159–167Google Scholar
  6. 6.
    Fryxell, K.J.: The coevolution of gene family trees. Trends in Genetics 12 (1996) 364–369.Google Scholar
  7. 7.
    Gaut, B.S., Doebley, J.F.: DNA sequence evidence for the segmental allotetraploid origin of maize. Proc. Natl. Acad. Sci., U.S.A. 94 (1997) 6809–6814.Google Scholar
  8. 8.
    Hinegardner, R.: Evolution of cellular DNS content in teleost fishes. American Naturalist 102 (1968) 517–523Google Scholar
  9. 9.
    Mewes, H.W., Albermann, K., Bähr, M., Frishman, D., Gleissner, A., Hani, J., Heumann, K., Kleine, K., Maierl, A., Oliver, S.G., Pfeiffer, F., Zollner, A.: Overview of the yeast genome. Nature 387 (suppl.) (1997) 7–65Google Scholar
  10. 10.
    Muller, F., Bernard, V., Tobler, H.: Chromatin diminution in nematodes. Bioessays 18 (1996) 133–138Google Scholar
  11. 11.
    Lovász, L., Plummer, M.D.: Matching Theory. Annals of discrete mathematics 121 (1986) 357–369Google Scholar
  12. 12.
    Moore, G., Devos, K. M., Wang, Z., Gale, M. D.: 1995. Grasses, line up and form a circle. Current Biology 5 (1995) 737–739.Google Scholar
  13. 13.
    Nadeau, J. H.: Genome duplication and comparative mapping. In Advanced Techniques in Chromosome Research (ed. Adolph, K.T.) (1991) (Marcel Dekker, New York) 269–296Google Scholar
  14. 14.
    Nadeau, J.H., Sankoff, D.: Comparable rates of gene loss and functional divergence after genome duplications early in vertebrate evolution. Genetics 147 (1997) 1259–1266Google Scholar
  15. 15.
    Ohno, S., Wolf, U., Atkin, N. B.: Evolution from fish to mammals by gene duplication. Hereditas 59 (1968) 169–187Google Scholar
  16. 16.
    Paterson, A.H., Lan, T.-H., Reischmann, K.P., Chang, C., Lin, Y.-R., Liu, S.C., Burow, M.D., Kowalski, S.P., Katsar, C.S., DelMonte, T.A., Feldmann, K.A., Schertz, K.F., Wendel, J.F.: Toward a unified genetic map of higher plants, transcending the monocot-dicot divergence. Nature Genetics 14 (1996) 380–382Google Scholar
  17. 17.
    Postlethwait, J.H., Yan, Y.-L., Gates, M.A., Horne, S., Amores, A., Brownlie, A., Donovan, A., Egan, E.S., Force, A., Gong, Z., Goutel, C., Fritz, A., Kelsh, R., Knapik, E., Liao, E., Paw, B., Ransom, D., Singer, A., Thomson, T., Abduljabbar, T.S., Yelick, P., Beier, D., Joly, J.-S., Larhammar, D., Rosa, F., Westerfield, M., Zon, L.I., and Talbot, W.S.: Vertebrate genome evolution and the zebrafish gene map. Nature Genetics 18 (1998) 345–349.Google Scholar
  18. 18.
    Seoighe, C., Wolfe, K.H.: Extent of genomic rearrangement after genome duplication in yeast. Proceedings of the National Academy of Sciences USA 95 (1998) 4447–4452.Google Scholar
  19. 19.
    Scheffier, J. A., Sharpe, A.G., Schmidt, H., Sperling, P., Parkin, I.A.P., Lühs, W., Lydiate, D.J., Heinz, E.: Desaturase multigene families of Brassica napus arose through genome duplication. Theoretical and Applied Genetics 94 (1997) 583–591Google Scholar
  20. 20.
    Shoemaker, R.C., Polzin, K., Labate, J., Specht, J., Brummer, E.C., Olson, T., Young, N., Concibido, V., Wilcox, J., Tamulonis, J.P., Kochert, G. Boerma, H.R.: Genome duplication in soybean (Glycine subgenus soja). 144 (1996) 329–228Google Scholar
  21. 21.
    Wolfe, K.H., Shields, D.C.: Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387 (1997) 708–713Google Scholar
  22. 22.
    Xu, R-H., Kim, J., Taira, M., Lin, J.J., Zhang, C.-H., Sredni, D., Evans, T., Kung, H.-F.: Differential regulation of neurogenesis by the two Xenopus GATA-1 genes. Molecular and Cellular Biology 17 (1997) 436–443Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Nadia El-Mabrouk
    • 1
  • Joseph H. Nadeau
    • 2
  • David Sankoff
    • 1
  1. 1.Centre de recherches mathématiquesUniversité de MontréalMontréal
  2. 2.Department of GeneticsCase Western Reserve UniversityCleveland

Personalised recommendations