Skip to main content

A high-speed small RSA encryption LSI with low power dissipation

  • Implementation(Hard/Soft)
  • Conference paper
  • First Online:
Information Security (ISW 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1396))

Included in the following conference series:

Abstract

A 1024-bit RSA encryption LSI with DES and MD5 functions was developed. An RSA accelerator core implemented in the LSI is 4.9 MM2 in area, and has three 1024-bit adders that perform doubling, squaring, and exponential operations simultaneously. A 1024-bit RSA operation takes 23 msec with 100mA peak current at the maximum frequency of 45 MHz. A 1024-bit RSA key is generated in 0.3 sec by using arithmetic functions supported by the LSI. The throughputs of DES and MD5 at 45 MHz are 18.9 MB/sec and 29.7 MB/sec, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Rivest, A. Shamir and L. Adelman: “A Method for Obtaining Digital Signatures and Public-key Cryptosystems,” Comm. ACM, vol. 21, no. 2, pp. 120–126, 1978.

    Google Scholar 

  2. P. Montgomery: “Modular Multiplication without Trial Division,” Mathematics of Computation, vol. 44, no. 170, pp. 519–521, 1985.

    Google Scholar 

  3. P. Barret: “Implementing the Rivest Shamir and Adelman Public Key Encryption Algorithm on a Standard Digital Signal Processor,” Advances in Cryptology — Crypto '86, LNCS 263, Springer-Verlag, pp. 311–323, 1987.

    Google Scholar 

  4. H. Sedlak: “The RSA Cryptography Processor,” Advances in Cryptology — Eurocrypt'87, LNCS 293, Springer-Verlag, pp. 95–105, 1988.

    Google Scholar 

  5. D. de Waleffe and J-J.Quisquater: “CORSAIR: A Smart Card for Public Key Cryptosystems,” Advances in Cryptology — Crypto '90, LNCS 537, Springer-Verlag pp. 503–513, 1990.

    Google Scholar 

  6. D. Naccache and D. M'Raihi: “Cryptographic Smart Cards,” IEEE Micro, vol. 16, no. 3, pp. 14–24, June 1996.

    Google Scholar 

  7. P. A. Ivey, A. L. Cox, J. R. Harbridge and J. K. Oldfield: “A Single-Chip Public Key Encryption System,” IEEE J. Solid-State Circuits, vol. 24, no. 4, pp. 1071–1075, Aug. 1989.

    Google Scholar 

  8. M. Shand and J. Vuillemin: “Fast Implementations of RSA Cryptography,” Proceedings of the 11th IEEE Symp. on Computer Arithmetic, pp. 252–259, 1993.

    Google Scholar 

  9. P. A. Ivey, S. N. Walker, J. M. Stern and S. Davidson: “An Ultra-High Speed Public Key Encryption Processor,” Proceedings of IEEE 1992 Custom Integrated Circuits Conf. pp. 19.6.1-19.6.4, May 1992.

    Google Scholar 

  10. A. Vandemeulebroeck, E. Vanzieleghem, T. Denayer, and P. G. A. Jespers: “A New Carry-Free Division Algorithm and its Application to a Single-Chip 1024-b RSA Processor,” IEEE J. Solid-State Circuits, vol. 25, no. 3, pp. 748–756, June 1990.

    Google Scholar 

  11. FIPS PUB 46, “Data Encryption Standard,” National Bureau of Standards, 1977.

    Google Scholar 

  12. FIPS PUB 81, “DES Modes of Operation,” National Bureau of Standards, 1980.

    Google Scholar 

  13. R. Rivest: “The MD5 Message-Digest Algorithm,” RFC 1321, Apr. 1992.

    Google Scholar 

  14. http://www.pijnenburg.nl, Pijnenburg Beheer N.V.

    Google Scholar 

  15. http://www.nel.co.jp, NTT Electronics Co.

    Google Scholar 

  16. http://www.siemens.de, Siemens AG.

    Google Scholar 

  17. http://www.st.com, SGS-Thomson Microelectronics.

    Google Scholar 

  18. http://www.philps.com, Philips.

    Google Scholar 

  19. http://www.mcu.motsps.com, Motorola.

    Google Scholar 

  20. M. Lehman and N. Burla: “Skip Techniques for High-Speed Carry Propagation in Binary Arithmetic Units,” IRE Trans. Elec. Comput., vol. EC-10, pp. 691–698, Dec. 1961.

    Google Scholar 

  21. O. J. Bedrij: “Carry-Select Adder,” IRE Trans. Elec. Comput., vol. EC-11, pp. 340–346, June 1962.

    Google Scholar 

  22. C. Pomerance: “On the Distribution of Pseudoprimes,” Mathmatics of Computation, vol. 34, no. 156, pp. 587–593, Oct. 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Eiji Okamoto George Davida Masahiro Mambo

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Satoh, A., Kobayashi, Y., Niijima, H., Ooba, N., Munetoh, S., Sone, S. (1998). A high-speed small RSA encryption LSI with low power dissipation. In: Okamoto, E., Davida, G., Mambo, M. (eds) Information Security. ISW 1997. Lecture Notes in Computer Science, vol 1396. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0030419

Download citation

  • DOI: https://doi.org/10.1007/BFb0030419

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64382-1

  • Online ISBN: 978-3-540-69767-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics