Skip to main content

Communication complexity and sequential computation

  • Invited Papers
  • Conference paper
  • First Online:
Book cover Mathematical Foundations of Computer Science 1997 (MFCS 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1295))

Abstract

The communication complexity of two-party protocols introduced by Abelson and Yao is one of the most intensively studied complexity measures for computing problems. This is a consequence of the relation of communication complexity to many fundamental (mainly parallel) complexity measures. This paper focuses on the relation between communication complexity and the following three complexity measures of sequential computation:

  • the size of finite automata,

  • the time- and space-complexity measures of Turing machines and

  • the time- and space-complexity for data structure problems.

We present a survey of the known relations between communication complexity and these three problem areas and formulate several open problems for further research.

The work of this author has been supported by DFG Project HR 14/3-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abelson, H., Lower bounds on information transfer in distributed computations. Proc. 19th Annual Symp. on Foundations of Computer Science, 151–158, 1978.

    Google Scholar 

  2. Aho, A.V., Ullman, J.D., Yannakakis, M., On notions of informations transfer in VLSI circuits. Proc. 15th Annual ACM Symp. on Theory of Computing, 133–139, 1983.

    Google Scholar 

  3. Babai, L., Nisan, N., Szegedy, M., Multiparty protocols and logspace-hard pseudo-random sequences. Proc. 21st Annual ACM Symp. on Theory of Computing, 1–11, 1989.

    Google Scholar 

  4. Beame, P., A general sequential time-space trade-off for finding unique elements. Proc. 21st Annual ACM Symp. on Theory of Computing, 197–203, 1989.

    Google Scholar 

  5. Cobham, A., The intrinsic computational difficulty of functions. Proc. 1964 Congress for Logic, Mathematics and Philosophy of Science, North Holland, 24–30, 1964.

    Google Scholar 

  6. Dietzfelbinger, M., The linear-array problem in communication complexity resolved. To appear in Proc. 29th Annual ACM Symp. on Theory of Computing, 1997.

    Google Scholar 

  7. Dietzfelbinger, M., Hromkovic, J., Schnitger, G., A comparison of two lower bounds methods for communication complexity. Theo. Comp. Sci. 168 (1), 39–51, 1996.

    Article  Google Scholar 

  8. Dietzfelbinger, M., Maass, W., Schnitger, G., The complexity of matrix transposition on one-tape Turing machines. Theoretical Computer Science, 82(1), 113–129, 1991.

    Article  Google Scholar 

  9. Ďuriš P., Hromkovič, J., Rolim, J., Schnitger, G., Las Vegas versus determinism for one-way communication complexity, finite automata, and polynomial-time computations. Proc. Symp. on Theoretical Aspects of Computer Science, Lecture Notes in Computer Science 1200, Springer-Verlag,117–128, 1997.

    Google Scholar 

  10. Gurevich, Y., On Kolmogorov machines and related issues. Bulletin of the European Association for Theoretical Computer Science, 1988.

    Google Scholar 

  11. Gr"oger, H.D., Turan, G., On linear decision trees computing Boolean Functions. Proc. 18th International Colloquium on Automata, Languages and Programming, 707–718, 1991.

    Google Scholar 

  12. Gr"oger, H.D., Turan, G., A linear lower bound for the size of threshold circuits. Bulletin of the European Association for Theoretical Computer Science. 1993.

    Google Scholar 

  13. Hopkroft, J.E., Ullman, J.D., Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, 1979.

    Google Scholar 

  14. Hromkovič, J., Relation between Chomsky hierarchy and communication complexity hierarchy. Acta Math. Univ. Com. (48–49), 311–317, 1986.

    Google Scholar 

  15. Hromkovič, J.: Communication Complexity and Parallel Computing. Springer-Verlag 1997.

    Google Scholar 

  16. Kalyanasundaram, B., Schnitger, G., The probabilistic communication complexity of set intersection. SIAM J. on Discrete Math. 5(4), 1992.

    Google Scholar 

  17. Kalyanasundaram, B., Schnitger, G., Communication complexity and lower bounds for sequential machines. In: Festschrift zum 60. Geburtstag von Günter Hotz, Teubner Verlag, 840–849, 1992.

    Google Scholar 

  18. Karchmer, M., Wigderson, A., Monotone circuits for connectivity require super-logarithmic depth, SIAM J. on Disc. Math., 718–727, 1990.

    Google Scholar 

  19. Kolmogorov, A. N., Uspenskij, V. A., On the definition of an algorithm. Russian Math. Surveys 30, 217–245, 1963.

    Google Scholar 

  20. Kushilevitz E., Nisan N., Communication Complexity. Cambridge University Press 1997.

    Google Scholar 

  21. Lengauer, Th., VLSI Theory. In: Handbook of Theoretical Computer Science, Vol. A, Algorithms and Complexity, Elsevier, 835–868, 1990.

    Google Scholar 

  22. Li, M., Longpre, L., Vitanyi, P.M.B., On the Power of the Queue. Structure in Complexity Theory, Lecture Notes in Computer Science, vol. 223, 219–223, 1986.

    Google Scholar 

  23. Maass, W., Quadratic lower bounds for deterministic and nondeterministic one-Tape Turing machines. Proc. 16th Annual ACM Symp. on Theory of Computing, 401–408, 1984.

    Google Scholar 

  24. Maass, W., Schnitger, G., Szemeredi, E., Turan, G., Two tapes are better than one for off-line Turing machines. Computational Complexity 3, 392–401, 1993.

    Article  Google Scholar 

  25. Lipton, R. J., Tarjan, R. E., Applications of a planar separator theorem. SIAM J. Computing 9, 615–627, 1980.

    Article  Google Scholar 

  26. Lovász, L., Communication Complexity: A Survey. In: Paths, Flow and VLSI Layout (Korte, LovAsz, Pr"omel, and Schrijver, eds.), Springer-Verlag, 235–266, Berlin 1990.

    Google Scholar 

  27. Mehlhorn, K., Schmidt, E., Las Vegas is better than determinism in VLSI and distributed computing. Proc. 14th Annual ACM Symp. on Theory of Computing, 330–337, 1982.

    Google Scholar 

  28. Micali, S., Two-way deterministic finite automata are exponentially more succinct than sweeping automata. Information Processing Letters 12(2), 103–105, 1981.

    Article  Google Scholar 

  29. Miltersen, P.B., Lower bounds for union-split-find related related problems on random access machines. Proc. 26th Annual ACM Symp. on Theory of Computing, 625–634, 1994.

    Google Scholar 

  30. Miltersen, P.B., Nisan, N., Safra, S., Wigderson, A., On data structures and asymmetric communication complexity. Proc. 27th Annual ACM Symp. on Theory of Computing, 103–111, 1995.

    Google Scholar 

  31. Nisan, N., The communication complexity of threshold gates. Technical Report, Dept. of Comp. Sci., Hebrew Univ., 1994.

    Google Scholar 

  32. Nisan, N., Wigderson, A.: On rank versus communication complexity. Combinatorica 15, 557–565, 1995.

    Article  Google Scholar 

  33. Orlitsky, A., El Gamal, A., Communication Complexity, In: Complexity in Information Theory (Y. Abu-Mostafa, ed.), Springer-Verlag 1988.

    Google Scholar 

  34. Raz, R., Wigderson, A., Monotone circuits for matching require linear depth, J. of the ACM 39(3), 736–744, 1992.

    Article  Google Scholar 

  35. Razborov A.A., On the distributed complexity of disjointness, Theo. Comput. Sci. 106(2), 385–390, 1992.

    Article  Google Scholar 

  36. Roychowdhury, V.P., Orlitzky, Sin K.Y., Lower bounds on threshold and related circuits via communication complexity. IEEE Transactions on Information Theory, 1994.

    Google Scholar 

  37. Schönhage, A. A., Storage modification machines. SIAM J. Computing 9, 490–508, 1980.

    Article  Google Scholar 

  38. Thompson, C.D., A complexity theory for VLSI, Doctoral dissertation. CMU-CS80-140, Computer Science Department, Carnegie-Mellon University, Pittsburgh, August 1980.

    Google Scholar 

  39. Turan, G., On the complexity of planar Boolean circuits. Computational Complexity, 1995.

    Google Scholar 

  40. Ullman, J. D., Computational Aspects of VLSI. Computer Science Press, 1984.

    Google Scholar 

  41. Wigderson, A., Information theoretic reasons for computational difficulty or communication complexity for circuit complexity. Proc. of the International Congress of Mathematicians, 1537–1548, 1990.

    Google Scholar 

  42. Yannakakis, M., Expressing combinatorial optimization problems by linear programs, J. of Comput. Syst. Sci. 43(3), 441–466, 1991.

    Article  Google Scholar 

  43. Yao, A. C., Some complexity questions related to distributive computing. Proc. 11th Annual ACM Symp. on Theory of Computing, 209–213, 1979.

    Google Scholar 

  44. Yao, A.C., Should tables be sorted? J. of ACM 28, 615–628, 1981.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Igor Prívara Peter Ružička

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hromkovič, J., Schnitger, G. (1997). Communication complexity and sequential computation. In: Prívara, I., Ružička, P. (eds) Mathematical Foundations of Computer Science 1997. MFCS 1997. Lecture Notes in Computer Science, vol 1295. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0029950

Download citation

  • DOI: https://doi.org/10.1007/BFb0029950

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63437-9

  • Online ISBN: 978-3-540-69547-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics