The use of graphs of elliptical influence in visual hierarchical clustering

  • Mirko Křivánek
Part of the Lecture Notes in Computer Science book series (LNCS, volume 452)


We explore hierarchical clustering methods in the plane within the context of visual separability by means of graphs of elliptical influence. A novel efficient method of visual hierarchical clustering is developed.


Hierarchical Cluster Voronoi Diagram Hierarchical Cluster Method Voronoi Region Gabriel Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    ASH P.,BOLKER E.:Generalized Dirichlet tesselations. Geometriae dedicata 20(1986), 209–243.Google Scholar
  2. [2]
    BENTLEY J.,WEIDE B., YAO A.:Optimal expected-time algorithms for closest point problems, ACM Trans.on Math.Software 6(1980),563–580.Google Scholar
  3. [3]
    DAY W.,EDELSBRUNNER H.:Efficient algorithms for agglomerative hierarchical clustering methods. J.of Classification 1(1984), 7–24.Google Scholar
  4. [4]
    DIDAY E.,et all: Optimisation en classification automatique. INRIA, 1979.Google Scholar
  5. [5]
    EDELSBRUNNER H.:Algorithms in combinatorial geometry. Springer, 1987.Google Scholar
  6. [6]
    HARTIGAN J.:Clustering algorithms. Wiley, 1975.Google Scholar
  7. [7]
    HOTTELING H.:Analysis of a complex statistical variables into principal components, J.Educ.Psych. 24(1933), 417–441.Google Scholar
  8. [8]
    HUBERT L.:Data analysis implications of some concepts related to cuts of graphs, J.Math.Psych. 15(1977), 199–208.Google Scholar
  9. [9]
    KŘIVÁNEK M., MORÁVEK J.: N-P-hard problems in hierarchical-tree clustering, Acta informatica 23(1986), 311–323.Google Scholar
  10. [10]
    MATULA D., SOKAL R.:Properties of Gabriel graphs relevant to geographic variation research and the clustering of point in the plane, Geographical analysis 12(1980), 205–222.Google Scholar
  11. [11]
    MEHLHORN K.: Data structures and algorithms 3: multidimensional searching and computational geometry. Springer, 1984.Google Scholar
  12. [12]
    MURTAGH F.:A survey of recent advances in hierarchical clustering algorithms, Computer J. 26(1983), 354–360.Google Scholar
  13. [13]
    PREPARATA F., SHAMOS M.: Computational geometry: an introduction. Springer, 1985.Google Scholar
  14. [14]
    TOUSSAINT G.:The relative neighborhood graph of a finite planer set, Pattern recognition 12(1980), 261–268.Google Scholar
  15. [15]
    URQUHART R.:Graph theoretical clustering based on limited neighborhood sets, Pattern recognition 15(1982), 173–187.Google Scholar
  16. [16]
    ZAHN C.:Graph-theoretical methods for detecting and describing gestalt clusters, IEEE Trans.on Computers 20(1971), 68–86.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Mirko Křivánek
    • 1
  1. 1.Department of Computer ScienceCharles UniversityPraha 1

Personalised recommendations