Advertisement

On the complexity of genuinely polynomial computation

  • Marek Karpinski
  • Friedhelm Meyer auf der Heide
Communications
Part of the Lecture Notes in Computer Science book series (LNCS, volume 452)

Abstract

We present separation results on genuinely (or strongly) time bounded sequential, parallel and nondeterministic complexity classes defined by RAMs with fixed set of arithmetic operations. In particular, we separate non-uniform polynomial time from non-uniform parallel polynomial time for the set of operations {+, −, *} (answering a question of [M 88]), and uniform deterministic polynomial time from uniform nondeterministic polynomial time for the set of operations {t+, −, DIV c }, where DIV c denotes a restricted integer division operation.

Keywords

Polynomial Time Separation Result Input Tape Polynomial Computation Straight Line Program 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BJM 88]
    Babai, L., Just, B., and Meyer auf der Heide, F., On the Limits of Computation with the Floor Function, Information and Computation 78 (1988), pp. 99–107.Google Scholar
  2. [BO 83]
    Ben-Or, M., Lower Bounds for Algebraic Computation Trees, Proc. 15th ACM STOC (1983), pp. 80–86.Google Scholar
  3. [BM 75]
    Borodin, A., and Munro, I., The Computational Complexity of Algebraic and Numeric Problems, Elsevier Computer Science Library, 1975.Google Scholar
  4. [C 85]
    Cook, S. A., A Taxonomy of Problems with Fast Parallel Algorithms, Information and Control 64 (1985), pp. 2–22.Google Scholar
  5. [JMW 88]
    Just, B., Meyer auf der Heide, F., and Widgerson, A., On Computations with Integer Division, Rairo Theoretical Informatics and Applications 23(1) (1989), pp. 101–111.Google Scholar
  6. [K 84]
    Karmakar, N., A New Polynomial Time Algorithm for Linear Programming, Proc. 16th ACM STOC (1984), pp. 302–311.Google Scholar
  7. [KR 88]
    Karp, R. M., and Remachandran, V., A Survey of Parallel Algorithms for Shared-Memory Machines, Research Report No. UCB/CSD 88/407, University of California, Berkeley (1988); to appear in: Handbook of Theoretical Computer Science, North Holland.Google Scholar
  8. [M 83]
    Meggido, N., Towards a Genuinely Polynomial Algorithm for Linear Programming, SIAM J. Comp. 12 (1983), pp. 347–353.Google Scholar
  9. [M 84]
    Meyer auf der Heide, F., A Polynomial Linear Search Algorithm for the n-Dimensional Knapsack Problem, J. ACM 31 (1984), pp. 668–676.Google Scholar
  10. [M 85]
    Meyer auf der Heide, F., Simulating Probabilistic by Deterministic Algebraic Computation Trees, Theoretical Computer Science 41 (1985), pp. 325–330.Google Scholar
  11. [M 88]
    Meyer auf der Heide, F. Fast Algorithms for n-Dimensional Restrictions of Hard Problems, J. ACM 35 (1988), pp. 740–747.Google Scholar
  12. [M 89]
    Meyer auf der Heide, F., On Genuinely Time Bounded Computations, Proc. 6th STACS (1988), pp. 1–16.Google Scholar
  13. [S 79]
    Schönhage, A., On the Power of Random Access Machines, Proc. 6th ICALP (1979), pp. 520–529.Google Scholar
  14. [SY 82]
    Steele, J. M., and Yao, A. C., Lower Bounds for Algebraic Decision Trees, J. of Algorithms 3 (1982), pp. 1–8.Google Scholar
  15. [S 84]
    Strassen, V., Algebraische Berechnungskomplexität, Perspectives in Mathematics, Anniversary of Oberwolfach 1984, Birkhäuser Verlag, Basel, 1984.Google Scholar
  16. [T 86]
    Tardos, E., A Strongly Polynomial Algorithm to Solve Combinatorial Linear Programs, Operations Research 34 (1986), pp. 250–256.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Marek Karpinski
    • 1
  • Friedhelm Meyer auf der Heide
    • 2
  1. 1.Dept. of Computer ScienceUniversity of BonnBonn 1
  2. 2.Dept. of Computer ScienceUniversity of PaderbornPaderborn

Personalised recommendations