Tree-stack automata

  • Wolfgang Golubski
  • Wolfram-M. Lippe
Part of the Lecture Notes in Computer Science book series (LNCS, volume 452)


In this paper we introduce a new model of stack automata, the so-called tree-stack automata, where the linear stack is extended to a tree-stack. A main subject of our investigations is to explore the relationship between tree-stack automata and stack automata. The recognition power of the one-way tree-stack automata is more powerful than the recognition power of (linear) stack automata. On the other hand two-way tree-stack automata have the same recognition power as two-way (linear) stack automata. We show the equivalence of tree-stack automata and one-way stack-pushdown machines of [EnMSvL]. From this equivalence follows that one-way tree-stack automata are more powerful than (linear) one-way stack automata and that they have an interesting grammatical characterization by Extended Basic grammars. Therefore closure properties for the class of accepting languages of one-way tree-stack automata can be derived.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Aho]
    Aho, A.V., (1969), Nested Stack Automata, J. Assoc. Comput. Mach. 16, pp. 383–406Google Scholar
  2. [Bee]
    Beeri, C., (1975), Two-Way Nested Stack Automata Are Equivalent to Two-Way Stack Automata, J. Comput. System Sci. 10, pp. 317–339Google Scholar
  3. [Bra]
    Brainerd, W.S., (1969), Tree Generating Regular Systems, Inform. and Control 14, pp. 217–231Google Scholar
  4. [Büc]
    Büchi, J.R., (1960), Regular canonical systems, Archiv für Mathematische Logik und Grundlagenforschung 6, pp. 91–111Google Scholar
  5. [EnMSvL]
    Engelfriet, J., Meineche Schmidt, E., van Leeuwen, J., (1980), Stack Machines and Classes of Nonnested Macro Languages J. Assoc. Comput. Mach. 27, pp. 96–117Google Scholar
  6. [EnRoSl]
    Engelfriet, J.,Rozenberg, G., Slutzki, G., (1980), Tree Transducer, L Systems, and Two-Way Machines, J. Comput. System Sci. 20, pp. 150–202Google Scholar
  7. [GiGrHal]
    Ginsburg, S., Greibach, S.A.,Harrison, M.A., (1967), Stack Automata and Compiling, J. Assoc. Comput. Mach. 14, pp. 172–201Google Scholar
  8. [GiGrHa2]
    Ginsburg, S., Greibach, S.A.,Harrison, M.A., (1967), One-Way Stack Automata, J. Assoc. Comput. Mach. 14, pp. 389–418Google Scholar
  9. [GoLi]
    Golubski, W., Lippe, W.-M., (1990), Automaten mit Baumspeicher, to appearGoogle Scholar
  10. [Gre]
    Greibach, S.A., (1969), Checking Automata and One-Way Stack Languages, J. Comput. System Sci. 3, pp. 196–217Google Scholar
  11. [Gue]
    Guessarian, I., (1983), Pushdown Tree Automata, Math. Syst. Theory 16, pp. 237–263Google Scholar
  12. [HaSc]
    Harrison, M.A., Schkolnick, M., (1971), A Grammatical Characterization of One-Way Nondeterministic Stack Languages, J. Assoc. Comput. Mach. 18, pp. 148–172Google Scholar
  13. [HoUl]
    Hopcroft, J.E., Ullman, J.D., (1979), Introduction to automata theory, languages and computation, Addison-Wesley Publishing CompanyGoogle Scholar
  14. [Lan1]
    Langmaack, H., (1973), On correct Procedure Parameter Transmission in Higher Programming Languages, Acta Informatica 2, pp. 110–142Google Scholar
  15. [Lan2]
    Langmaack, H., (1973,1974), On Procedures as Open Subroutines I+II, Acta Informatica 2+3, pp. 331–333, pp. 227–241Google Scholar
  16. [Lip1]
    Lippe, W.-M., (1976), Über die Entscheidbarkeit der formalen Erreichbarkeit von Prozeduren bei monadischen Programmen, 4. Fachtagung über Programmiersprachen, Informatik-Fachberichte 1, Springer-Verlag, pp.124–134Google Scholar
  17. [Lip2]
    Lippe, W.-M., (1980), Erweiterungen von Dendrogrammatiken, J. Inform. Process. Cybern. 16, pp. 21–39Google Scholar
  18. [Lip3]
    Lippe, W.-M., (1983), Top-Down-Baumerzeugende Systeme und Automaten, Habilitation Thesis, University KielGoogle Scholar
  19. [Odg]
    Odgen, W.F., (1969), Intercalation Theorems For Stack Languages, Conf. Rec. of ACM Symposium on Theory of Computing, Marina del Rey, California, pp. 31–42Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Wolfgang Golubski
    • 1
  • Wolfram-M. Lippe
    • 2
  1. 1.Fak. Mathematik, Lehrst. Praktische InformatikRuhr-Universität BochumBochum
  2. 2.Fachbereich 15, Institut für numerische und instrum. Mathematik / InformatikWilhelms-Universität MünsterMünster

Personalised recommendations