Advertisement

Generalized kolmogorov complexity in relativized separations

  • Ricard Gavaldà
  • Leen Torenvliet
  • Osamu Watanabe
  • José L. Balcázar
Communications
Part of the Lecture Notes in Computer Science book series (LNCS, volume 452)

Abstract

We describe several developments of a technique, due to Hartmanis, that uses Kolmogorov complexity to prove the existence of relativizations separating complexity classes. The main advantage of these proofs is that they clearly show the limitations of certain classes of oracle machines and the relevance of these limitations for the proof. Such limitations refer to the extent to which the machines defining the class are able to process Kolmogorov-complex structures.

Keywords

Complex Query Kolmogorov Complexity Complex Word Oracle Query Work Tape 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8. References

  1. [1]
    E. Allender, C. Wilson: “Downward translations of equality”. Rutgers University Technical Report DCS-TR-258, 1989.Google Scholar
  2. [2]
    J.L. Balcázar, J. Díaz, J. Gabarró: Structural Complexity I. EATCS Monographs on Theoretical Computer Science, vol. 11 (1988), Springer-Verlag.Google Scholar
  3. [3]
    J.L. Balcázar, J. Díaz, J. Gabarró: Structural Complexity II. EATCS Monographs on Theoretical Computer Science, vol. 22 (1990), Springer-Verlag (in press).Google Scholar
  4. [4]
    H. Buhrman, E. Spaan, L. Torenvliet: “On adaptive resource bounded computations” (submitted for publication).Google Scholar
  5. [5]
    R. Gavaldà: “Separations of exponential time and polynomial space”. Research report, LSI Department, Univ. Politècnica de Catalunya (in preparation).Google Scholar
  6. [6]
    J. Hartmanis: “Generalized Kolmogorov complexity and the structure of feasible computations”. In: Proc. 24th IEEE Symposium on Foundations of Computer Science (1983), 439–445.Google Scholar
  7. [7]
    R. Ladner, N. Lynch: “Relativization of questions about log space computability”. Mathematical Systems Theory 10 (1976), 19–32.Google Scholar
  8. [8]
    R. Ladner, N. Lynch, A. Selman: “A comparison of polynomial time reducibilities”. Theoretical Computer Science 1 (1975), 103–123.Google Scholar
  9. [9]
    M. Li, P.M.B. Vitányi: “Two decades of applied Kolmogorov complexity”. In: Proc. 3rd Structure in Complexity Theory Conference (1988), 80–101.Google Scholar
  10. [10]
    P. Orponen: “Complexity classes of alternating machines with oracles”. In: Proc. 10th Int. Coll. Automata, Languages, and Programming (1983), 573–584. Springer-Verlag Lecture Notes in Computer Science 154.Google Scholar
  11. [11]
    K. Wagner: “Bounded query computations”. In: Proc. 3rd Structure in Complexity Theory Conference (1988), 260–277.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Ricard Gavaldà
    • 1
  • Leen Torenvliet
    • 2
  • Osamu Watanabe
    • 3
  • José L. Balcázar
    • 1
  1. 1.Departament de Llenguatges i Sistemes InformàticsUniv. Politècnica de CatalunyaBarcelonaSpain
  2. 2.Faculteit Wiskunde en InformaticaUniversiteit van AmsterdamAmsterdam
  3. 3.Department of Computer ScienceTokyo Institute of TechnologyOokayama, TokyoJapan

Personalised recommendations