Advertisement

Affine automata: A technique to generate complex images

  • Karel CulikII
  • Simant Dube
Communications
Part of the Lecture Notes in Computer Science book series (LNCS, volume 452)

Abstract

In this paper, we introduce probabilistic affine automata (PAA) which are probabilistic finite generators having transitions labeled with affine transformations. It is shown that PAA are capable of generating highly complex images. Barnsley's IFS method to generate fractals is a special case of PAA when the automaton happens to have only a single state.

Keywords

Contractive Mapping Affine Transformation Iterate Function System Complex Image Outgoing Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. F. Barnsley, Fractals Everywhere, Academic Press, 1988.Google Scholar
  2. [2]
    M. F. Barnsley, J. H. Elton and D. P. Hardin, “Recurrent Iterated Function Systems”, Constructive Approximation, 5 3–31 (1989).Google Scholar
  3. [3]
    M. F. Barnsley, A. Jacquin, L. Reuter and A. D. Sloan, “Harnessing Chaos for Image Synthesis”, Computer Graphics, SIGGARPH 1988 Conference Proceedings.Google Scholar
  4. [4]
    K. Culik and S. Dube, “Image Synthesis using Affine Automata”, Technical Report TR90004, Dept. of Computer Science, Univ. of S. Carolina.Google Scholar
  5. [5]
    K. Culik and S. Dube, “Image Synthesis using Rational Expressions”, Technical Report TR90001, Dept. of Computer Science, Univ. of S. Carolina.Google Scholar
  6. [6]
    D. B. Ellis and M. G. Branton, “Non-Self-Similar Attractors of Hyberbolic IFS”, in: J. C. Alexander (Ed.), Dynamical Systems, Lecture Notes in Mathematics 1342, pp. 158–171, Springer-Verlag, 1988.Google Scholar
  7. [7]
    J.Gleick, Chaos-Making a New Science, Penguin Books, 1988.Google Scholar
  8. [8]
    B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freeman and Co., San Francisco, 1982.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Karel CulikII
    • 1
  • Simant Dube
    • 1
  1. 1.Dept. of Computer ScienceUniversity of South CarolinaColumbiaUSA

Personalised recommendations