Decomposition of semi commutations

  • M. Clerbout
  • D. Gonzalez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 452)


We define atomic semi commutations as being associated to independance relations the form of which is A × B, in which A and B are two disjoint subsets of the alphabet. We prove that semi commutations can be decomposed in weaker semi commutations if and only if they are not atomic. We then deduce that every semi commutation can be obtained by a composition of atomic semi commutations and we suggest a decomposition algorithm.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    IJ.J. Aabersberg & G. Rozenberg. Theory of Traces. Theorical Computer Science 60 (1986) 1–83.Google Scholar
  2. [2]
    J.Berstel. Transductions and Context-Free Languages. Teubner (1979).Google Scholar
  3. [3]
    J. Berstel & J. Sakarovich. Recents results in the theory of rational sets. Lect. Notes in Comp.Sci. 233 (1986) 15–28.Google Scholar
  4. [4]
    P.Cartier & D.Foata. Problèmes combinatoires de commutations et réarrangements. Lect. Notes in Math. 85 (1969).Google Scholar
  5. [5]
    M.Clerbout. Commutations partielles et familles de langages. Thèse, Université de Lille (1984).Google Scholar
  6. [6]
    M. Clerbout, Compositions de fonctions de commutation partielle. RAIRO Informatique Théorique et Applications 23 (1989) 395–424.Google Scholar
  7. [7]
    M. Clerbout & M. Latteux. Partial commutations and faithful rational transductions. Theoretical Computer Science 34 (1984) 241–254.Google Scholar
  8. [8]
    M.Clerbout & M.Latteux. On a generalization of partial commutations. in M.Arato, I.Katai, L.varga, eds, Prc.Fourth Hung. Computer Sci.Conf (1985) 15–24.Google Scholar
  9. [9]
    M. Clerbout & M. Latteux. Semi-commutations. Information and Computation 73 (1987) 59–74.Google Scholar
  10. [10]
    M.Clerbout, M.Latteux & Y.Roos, Decomposition of partial commutations, Publication interne LIFL, Université de Lille, IT173 (1989) and ICALP'90.Google Scholar
  11. [11]
    R.Cori. Partially abelian monoids. Invited lecture, STACS, Orsay (1986).Google Scholar
  12. [12]
    R. Cori & D. Perrin. Automates et commutations partielles. RAIRO Inform. Theor. 19 (1985) 21–32.Google Scholar
  13. [13]
    M.Latteux, Rational cones and commutations. Machines, Languages and Complexity. J.Dassow and J.Kelemen eds., Lect. Notes in Comp.Sci. (1989) 37–54.Google Scholar
  14. [14]
    A.Mazurkiewicz. Concurrent program schemes and their interpretations. DAIMI PB 78, University of Aarhus (1977).Google Scholar
  15. [15]
    A. Mazurkiewicz. Traces, histories and graphs: instances of process monoids. Lect. Notes in Comp.Sci. 176 (1984) 115–133.Google Scholar
  16. [16]
    Y. Metivier. On recognizable subsets of free partially commutative monoids. Lect. Notes in Comp.Sci. 226 (1986) 254–264.Google Scholar
  17. [17]
    E. Ochmanski. Regular behaviour of concurrent systems. Bulletin of EATCS 27 (1985) 56–67.Google Scholar
  18. [18]
    D.Perrin. Words over a partially commutative alphabet. NATO ASI Series F12, Springer (1985) 329–340.Google Scholar
  19. [19]
    Y.Roos. Contribution à l'étude des fonctions de commutations partielles. Thèse, Université de Lille (1989).Google Scholar
  20. [20]
    W. Zielonka. Notes on asynchronous automata. RAIRO Inform. Theor. 21 (1987) 99–135.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • M. Clerbout
    • 1
  • D. Gonzalez
    • 1
  1. 1.LIFL, Université de LilleFrance

Personalised recommendations