Advertisement

Counting the number of solutions

A survey of recent inclusion results in the area of counting classes
  • Jacobo Torán
Invited Lectures
Part of the Lecture Notes in Computer Science book series (LNCS, volume 452)

Keywords

Polynomial Time Turing Machine Complexity Class Computation Path Probabilistic Polynomial Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. Allender: The complexity of sparse sets in P. Proc. 1st Structure in Complexity Theory Conference, Lect. Notes in Comp. Sci., (1986) 1–11.Google Scholar
  2. [2]
    E. Allender and K. Wagner: Counting hierarchies: polynomial time and constant depth circuits. Bulletin of the EATCS 40, (1990) 49–57.Google Scholar
  3. [3]
    J.L. Balcázar, J. Diaz, and J. Gabarró: Structural Complexity (vol. I). Springer-Verlag (1987).Google Scholar
  4. [4]
    R. Beigel: Relativized counting classes: Relations among thresholds, parity and mods. Journal of Comput. Syst. Sci. To appear.Google Scholar
  5. [5]
    R. Beigel: Polynomial interpolation, threshold circuits and the polynomial hierarchy. Manuscript, Jan. 1990.Google Scholar
  6. [6]
    R. Beigel, J. Gill and U. Hertrampf: Counting classes: thresholds, parity mod and fewness. Proc. STACS 90, Lect. Notes in Comp. Sci., (1990) 49–57.Google Scholar
  7. [7]
    R. Beigel, L. Hemachandra and G. Wechsung: On the power of probabilistic polynomial time. Proc. 4th Structure in Complexity Theory Conference, IEEE (1989) 225–230.Google Scholar
  8. [8]
    A. Blass and Y. Gurevich. On the unique satisfiability problem. Information and Control 55 (1982), 80–88.Google Scholar
  9. [9]
    J.Y. Cai, L.A. Hemachandra: On the power of parity polynomial time. Proc. STACS 89, Lect. Notes in Comp. Sci., (1989) 229–239.Google Scholar
  10. [10]
    J. Gill: Computational complexity of probabilistic Turing machines. SIAM J. Comput. 6 (1977), 675–695.Google Scholar
  11. [11]
    A.V. Goldberg, M. Sipser: Compression and ranking. Proc. 17th STOC Conference (1985), 440–448.Google Scholar
  12. [12]
    K. Ko and U. Schöning: On circuit-size complexity and the low hierarchy in NP. SIAM J. Comput. 14 (1985), 41–51.Google Scholar
  13. [13]
    J. Köbler: Strukturelle Komplexität von Anzahlproblemen. Ph.D. Thesis. Universität Suttgart, (1989).Google Scholar
  14. [14]
    J. Köbler, U. Schöning, S. Toda, J. Torán: Turing machines with few accepting computations and low sets for PP. Proc. 4th Structure in Complexity Theory Conference, IEEE (1989) 208–216.Google Scholar
  15. [15]
    M.W. Krentel: The complexity of optimization problems. Proc. 18th STOC Conference, (1986) 69–76.Google Scholar
  16. [16]
    C.H. Papadimitriou, S. Zachos: Two remarks on the power of counting. 6th GI Conference on Theoret. Comput. Sci., Lect. Notes in Comp. Sci. (1983), 269–276.Google Scholar
  17. [17]
    C. Rackoff: Relativized questons involving probabilistic algorithms. J. Assoc. Comput. Math. 29 (1982) 261–268.Google Scholar
  18. [18]
    U. Schöning: A low and a high hierarchy within NP. Journal Comput. Syst. Sci. 27 (1983), 14–28.Google Scholar
  19. [19]
    U. Schöning: Complexity and structure. Lect. Notes in Comp. Sci. 211, Springer-Verlag (1985).Google Scholar
  20. [20]
    U. Schöning: Probabilistic complexity classes and lowness. Proc. 2nd Structure in Complexity Theory Conference, IEEE, (1988), 2–8.Google Scholar
  21. [21]
    U. Schöning: The power of counting. Proc. 3rd Structure in Complexity Theory Conference, IEEE, (1988), 1–9.Google Scholar
  22. [22]
    J. Simon: On some central problems in computational complexity. Ph.D. Thesis, Cornell University (1975).Google Scholar
  23. [23]
    S. Toda: On the computational power of PP and ⊕P, Proc. 30th FOCS Conference, (1989) 514–519.Google Scholar
  24. [24]
    J. Torán: Structural properties of the counting hierarchies. Ph.D. Thesis. Facultat d'Informática de Barcelona, (1988).Google Scholar
  25. [25]
    J. Torán: An oracle characterization of the counting hierarchy. Proc. 3rd Structure in Complexity Theory Conference, IEEE, (1988), 213–223Google Scholar
  26. [26]
    J. Torán: A combinatorial technique for separating counting complexity classes. Proc. 16th ICALP Conference, Lecture notes in Comp. Science, (1989), 733–745.Google Scholar
  27. [27]
    L. Valiant: The relative complexity of cheking and evaluating. Inform. Proc. Letters 5 (1976), 20–23.Google Scholar
  28. [28]
    L. Valiant and V. Vazirani: NP is as easy as detecting unique solutions. Theoretical Comp. Science 47 (1986), 85–93.Google Scholar
  29. [29]
    K. Wagner: The complexity of combinatorial problems with succint input representation. Acta Informatica 23 (1986), 325–356.Google Scholar
  30. [30]
    K. Wagner: Bounded query computations. Proc. 3rd Structure in Complexity Theory Conference, IEEE, (1988), 260–277.Google Scholar
  31. [31]
    K. Wagner and G. Wechsung: Computational complexity. Reidel (1986).Google Scholar
  32. [32]
    S. Zachos: Robustness of probabilistic complexity classes under definitional perturbations. Information an control 54 (1982), 143–154.Google Scholar
  33. [33]
    S. Zachos and H. Heller: A decisive characterization of BPP. Information an control 69 (1986), 125–135.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Jacobo Torán
    • 1
  1. 1.Departament L.S.I.U. Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations