Advertisement

Type inference problems: A survey

  • Jerzy Tiuryn
Invited Lectures
Part of the Lecture Notes in Computer Science book series (LNCS, volume 452)

Keywords

Turing Machine Atomic Type Type Scheme Object Variable Inference Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Boehm, H.-J., “Partial polymorphic type inference is undecidable”, Proc. 26th IEEE Symp. Foundations of Computer Science, pp. 339–345, 1985.Google Scholar
  2. [2]
    Cardelli, L., “A semantics of multiple inheritance”, In: Semantics of Data Types, Kahn, MacQueen and Plotkin (eds.), LNCS vol. 173, pp 51–67, Springer 1984.Google Scholar
  3. [3]
    Church, A. “A formulation of the simple theory of types,” Journal of Symbolic Logic, 5, pp 56–68, 1940.Google Scholar
  4. [4]
    Cox, B., “Object-Oriented Programming: An Evolutionary Approach,” Addison-Wesley, Reading, MA, 1986.Google Scholar
  5. [5]
    Curry H.B. and Feyes, R. “Combinatory Logic,” North-Holland, Amsterdam, 1958.Google Scholar
  6. [6]
    Damas, L. and Milner, R., “Principal type schemes for functional programs,” Proc. 9-th ACM Symp. Principles of Prog. Lang., pp 207–212, 1982.Google Scholar
  7. [7]
    Dwork, C., Kanellakis, P., Mitchell, J.C., “On the sequential nature of unification”, J. of Logic Programming, 1, pp 35–50, 1984.Google Scholar
  8. [8]
    Fortune, S., Leivant, D., and O'Donnell, M., “The expressiveness of simple and second-order type structures”, J. ACM, 30, pp 151–185, 1983.Google Scholar
  9. [9]
    Fuh, Y., and Mishra, P., “Type inference with subtypes”, In Proc. 2nd European Symp. on Programming, ESOP'88 Ganziger (ed.) LNCS vol. 300, pp 94–114, Springer, 1988.Google Scholar
  10. [10]
    Giannini, P., Ronchi Della Rocca, S., “Characterization of typings in polymorphic type discipline”, Proc of IEEE 3-rd Symp. Logic in Computer Science, pp 61–71, 1988.Google Scholar
  11. [11]
    Girard, J.-Y., Interprétation fonctionelle et élimination des coupures de l'arithmétique d'ordre supérieure, Doctoral thesis, Université Paris VII, 1972.Google Scholar
  12. [12]
    Girard, J.-Y., “Une extension de l'interprétation de Gödel a l'analyse et son application à l'élimination des coupures dans l'analyse et la théorie des types”, in Proc. 2nd Scandinavian Logic Symposium, Fenstad (ed.), North-Holland, 1971.Google Scholar
  13. [13]
    Henglein, F., “Type inference and semi-unification”, Proc. ACM Symp. LISP and Functional Programming, July 1988.Google Scholar
  14. [14]
    Hindley, J.R., “The principal type-scheme of an object in combinatory logic”, Transactions of the American Mathematical Society, 146, pp 29–60, 1969.Google Scholar
  15. [15]
    Hooper, P.K., “The undecidability of the Turing machine immortality problem”, Journal of Symbolic Logic, 31, No. 2, pp 219–234, 1966.Google Scholar
  16. [16]
    Jategaonkar, L., “ML with Extended Pattern Matching and Subtypes”, MS Thesis, MIT, 1989.Google Scholar
  17. [17]
    Kanellakis, P., Mitchell, J.C., “Polymorphic unification and ML typing”, Proc. 16-th Symp. on Principles of Prog. Lang., pp 105–115, 1989.Google Scholar
  18. [18]
    Kapur, D., Musser, D., Narendran, P., and Stillman, J., “Semi-unification”, Proc. of 8-th Conference on Foundations of Software Technology and Theoretical Computer Science, Pune, India, 1988.Google Scholar
  19. [19]
    Kfoury, A.J., Tiuryn, J. and Urzyczyn, P., “A proper extension of ML with an effective type-assignment,” Proc. 15-th ACM Symp. Principles of Programming Languages, pp 58–69, 1988.Google Scholar
  20. [20]
    Kfoury, A.J., Tiuryn, J. and Urzyczyn, P., “Type-checking in the presence of polymorphic recursion”, Boston University Research Report, 1989. Part of the results of this paper has been presented in “Computational consequences and partial solutions of a generalized unification problem”, Proc. of IEEE 4-th Symp. Logic in Computer Science pp 98–105, 1989.Google Scholar
  21. [21]
    Kfoury, A.J., Tiuryn, J. and Urzyczyn, P., “The undecidability of the semi-unification problem”, Proc. ACM Symp. Theory of Computing, 1990.Google Scholar
  22. [22]
    Kfoury, A.J., Tiuryn, J. and Urzyczyn, P., “An analysis of ML typability”, 15-th Colloquium on Trees in Algebra and Programming, CAAP'90, Copenhagen, Springer, 1990.Google Scholar
  23. [23]
    Kfoury, A.J., and Tiuryn, J., “Type reconstruction in finite-rank fragments of the second-order λ-calculus”, Proc. 5-th IEEE Symp. Logic in Computer Science, 1990.Google Scholar
  24. [24]
    Leiß H., “On Type Inference for Object-Oriented Programming Languages”, In Proc. 1st Workshop on Computer Science Logic, Börger, Büning and Richter (eds.), LNCS vol.329, pp 151–172, Springer, 1987.Google Scholar
  25. [25]
    Leivant, D., “Polymorphic type inference”, Proc. 10th ACM Symp. Principles of Programming Languages, 1983.Google Scholar
  26. [26]
    Leivant, D., “Stratified Polymorphism, (Extended Summary),” Proc. 4th IEEE Symp. Logic in Computer Science, pp. 39–47, 1989.Google Scholar
  27. [27]
    Mairson, H.G. “Deciding ML typability is complete for deterministic exponential time”, Proc. 16-th ACM Symp. Principles of Programming Languages, 1990.Google Scholar
  28. [28]
    McCraken, N., “The typechecking of programs with implicit type structure”, In: Semantics of Data Types, Kahn, MacQueen and Plotkin (eds.), LNCS vol. 173, pp 301–315, Springer, 1984.Google Scholar
  29. [29]
    Milner, R., “A theory of type polymorphism in programming”, J. of Computer and System Sciences, Vol. 17, pp 348–375, 1978.Google Scholar
  30. [30]
    Milner, R., “The standard ML core language”, Polymorphism, II (2), October 1985.Google Scholar
  31. [31]
    Mitchell, J.C., “Coercion and Type Inference (Summary)”, Proc. 11th ACM Symp. Principles of Programming Languages, pp 175–185, 1984.Google Scholar
  32. [32]
    Mitchell, J. and Harper, R., “The essence of ML”, Proc. 15-th ACM Symp. Principles of Prog. Lang., 1988.Google Scholar
  33. [33]
    Mycroft, A., “Polymorphic type schemes and recursive definition,” Int'l Symp. on Programming, Paul and Robinet (eds.), LNCS vol. 167, pp 217–228, Springer, 1984.Google Scholar
  34. [34]
    Ohori, A., and Buneman, P., “Type Inference in a Database Programming Language”, Proc. ACM Conf. Lisp and Functional Programming, pp 174–183, 1988.Google Scholar
  35. [35]
    Paterson, M.S., Wegman, M.N., “Linear unification”, JCSS, 16, pp 158–167, 1978.Google Scholar
  36. [36]
    Pfenning, F., “Partial Polymorphic Type Inference and Higher-Order Unification”, Proc. ACM Conference on Lisp and Functional Programming, 1988.Google Scholar
  37. [37]
    Pudlák, P., “On a unification problem related to Kreisel's conjecture”, Commentationes Mathematicae Universitatis Carolinae, Prague, Czechoslovakia, 29, no. 3, pp 551–556, 1988.Google Scholar
  38. [38]
    Rèmy, D., “Typechecking records and variants in a natural extension of ML”, Proc. 16th ACM Symp. Principles of Programming Languages, pp. 77–87, 1989.Google Scholar
  39. [39]
    Reynolds, J., “Towards a theory of type structure”, In Proc. Programming Symposium, Robinet (ed.), LNCS vol. 19, pp 408–425, Springer, 1974.Google Scholar
  40. [40]
    Stansifer, R., “Type Inference with Subtypes”, Proc. 15th ACM Symp. Principles of Programming Languages, pp. 88–97, 1988.Google Scholar
  41. [41]
    Tyszkiewicz, J., “Complexity of Type Inference in Finitely Typed Lambda Calculus,” MS Thesis, University of Warsaw, 1988.Google Scholar
  42. [42]
    Wand, M., and O'Keefe, P. “On the Complexity of Type Inference with Coercions”, Manuscript 1989.Google Scholar
  43. [43]
    Wand, M., “Complete type inference for simple objects”, Proc. 2nd IEEE Symposium on Logic in Computer Science, pp 37–44, 1987. See also “Corrigendum: complete type inference for simple types”, Proc. 3rd IEEE Symposium on Logic in Computer Science, p 132, 1988.Google Scholar
  44. [44]
    Wand, M., “Type Inference for Record Concatenation and Miultiple Inheritance”, Proc. 4th IEEE Symp. Logic in Computer Science, pp 92–97, 1989.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Jerzy Tiuryn
    • 1
  1. 1.Institute of MathematicsUniversity of WarsawWarsaw, PKIN IXpPoland

Personalised recommendations