Advertisement

Methodology for the design of digital brain atlases

  • B. Gibaud
  • S. Garlatti
  • C. Barillot
  • E. Faure
Image and Signal Processing
  • 117 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1211)

Abstract

This paper deals with the development of computerized brain atlases addressing both research and clinical needs. The authors analyze in detail the potentialities of these systems and discuss the capabilities and limitations of the digital atlases currently being developed around the world. The authors propose to reconsider the concept of a brain atlas, regarding both its content, and the way it has to be used and managed in order to set up a more effective cooperation between the user and the system. Particular emphasis is put on the evolutivity and reuse issues, which are critical in this rapidly evolving field. These orientations result from both the authors' experience and the analysis of current trends in the field of neuroimaging. The general methodology is illustrated with examples related to computer aided surgical planning.

Keywords

Brain Atlas Situate Knowledge Biomedical Knowledge Warping Model Knowledge Acquisition Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    J. Talairach and P. Tournoux, Co-Planar Stereotactic Atlas Of The Human Brain. Stuttgart: Georg Thieme Verlag, 1988.Google Scholar
  2. 2.
    G. Szikla, G. Bouvier, and T. Hori, Angiography of the human cortex. Berlin, Heidelberg, New York: Springer Verlag, 1977.Google Scholar
  3. 3.
    G. Schaltenbrand and W. Wahren, Atlas for stereotaxy of the human brain, Thieme, Stuttgart 1977.Google Scholar
  4. 4.
    M. Ono, S. Kubik, and C. D. Abernathey, Atlas of the cerebral sulci. Stuttgart: Georg Thieme Verlag, 1991.Google Scholar
  5. 5.
    R. J. Seitz, C. Bohm, T. Greitz, P. E. Roland, L. Eriksson, G. Blomqvist, G. Rosenqvist, and B. Nordell, “Accuracy and precision of the computerized brain atlas programme for localization and quantification in Positron Emission Tomography”, Journal of cerebral blood flow and metabolism, pp. 443–457, 1990.Google Scholar
  6. 6.
    A. C. Evans, T. S. Marrett, J. Torrescorzo, S. Ku, and D. L. Collins, “Mri-Pet Correlative Analysis Using A Volume Of Interest (Voi) Atlas”, J. of Cerebral Blood Flow and Metabolism, vol. 11, pp. A69–A78, 1991.Google Scholar
  7. 7.
    C. Barillot, B. Gibaud, J.M. Scarabin and J.L.Coatrieux, “Three dimensional reconstruction of cerebral blood vessels”, IEEE computer graphics and applications, 5, 12, pp. 13–19, 1985.Google Scholar
  8. 8.
    C. Barillot, B. Gibaud, O. Lis, L.M. Luo, A. Bouliou, G. Le Certen, R. Collorec and J.L. Coatrieux, “Computer graphics in medicine: a survey”, CRC Critical Reviews in Biomedical Engineering, 15, 4, pp. 269–307, 1988.Google Scholar
  9. 9.
    D. Lemoine, C. Barillot, B. Gibaud and E. Pasqualini, “An anatomical-based 3D registration system of multimodality and atlas data in neurosurgery”, IPMI 1991, London, Information Processing in Medical Imaging, Lecture notes in computer science. Vol 511, A.C.F. Colchester and D.J. Hawkes (Eds), Springer Verlag, pp. 154–164, 1991.Google Scholar
  10. 10.
    C. Barillot, D. Lemoine, L. L. Briquer, F. Lachmann, and B. Gibaud, “Data fusion in medical imaging: merging multimodal and multipatient image, identification of structures and 3D Display aspects”, European Journal of Radiology, vol. 17, pp. 22–27, 1993.Google Scholar
  11. 11.
    E. Montabord, B. Gibaud, C. Barillot, S. Garlatti, I. Kanellos, B.S. Wu, A. Biraben and X. Morandi, “An Hypermedia System to Manage Anatomical Knowledge about Brain”, in: Lemke HU, Inamura K., Jaffe CC, Felix R. Eds., Computer Assisted Radiology, Springer-Verlag, pp. 414–419, 1993.Google Scholar
  12. 12.
    C. Barillot, B. Gibaud, E. Montabord, S. Garlatti and I. Kanellos, “An Information System to Manage Anatomical Knowledge and Image Data about Brain”, SPIE Vol 2359, Visualization in Biomedical Computing, pp. 424–434, 1994.Google Scholar
  13. 13.
    E. Montabord, B. Gibaud and C. Barillot, “HYPER-YAKA: Hypermedia et base de connaisances sensible au contexte”. Congrès “Langages et Modèles à Objets”, Nancy, pp. 153–171, 1995.Google Scholar
  14. 14.
    J.H. Yapi, A. Lasquellec and B. Gibaud, “Evolution de schéma et migration d'instances. Prise en compte des besoins d'une application médicale”. Congrès Bases de Données Avancées (BDA 96), Cassis (France), 1996.Google Scholar
  15. 15.
    A. W. Toga, “A Three-Dimensional atlas of structure/function relationships”, Journal of chemical neuroanatomy, pp. 313–318, 1991.Google Scholar
  16. 16.
    W. L. Nowinski, A. Fang, and B. T. Nguyen, “Schaltenbrand-Wharen/Talairach-Tournoux brain atlas registration”, SPIE Vol 2431, pp. 126–136, 1995.Google Scholar
  17. 17.
    J. F. Brinkley, K. Eno, and J. W. Sundsten, “Knowledge-based client-server approach to structural information retrieval: the digital Anatomist Browser”, Computers Methods and Programs in Biomedecine, pp. 131–145, 1993.Google Scholar
  18. 18.
    K. H. Höhne, M. Bomans, M. Riemer, R. Schubert, U. Tiede, and W. Lierse, “A volume based anatomical atlas”, IEEE Comp. Graphics & Appl., vol. 12, pp. 72–78, 1992.Google Scholar
  19. 19.
    R. Bajcsy and S. Kovacic, “Multiresolution Elastic Matching”, CVGIP, vol. 46, pp. 1–21, 1989.Google Scholar
  20. 20.
    F. L. Bookstein, “Thin-Plate Splines And The Atlas Problem For Biomedical Images”, in Information Processing in Medical Imaging, Lecture Notes in Computer Sciences Vol.511, A. C. F. Colchester and D. J. Hawkes, Eds. Berlin: Springer-Verlag, pp. 326–342, 1991.Google Scholar
  21. 21.
    A. C. Evans, D. L. Collins, and B. Milner, “An MRI-based stereotactic atlas from 250 young normal subjects”, Soc. Neurosci. Abstr, pp. 408, 1992.Google Scholar
  22. 22.
    J. C. Gee, C. Barillot, L. Le Briquer, D. R. Haynor, and R. Bacjsy, “Matching Structural Images of the Human Brain using Statistical and Geometrical Image Features”, presented at SPIE, Visualization in Biomedical Computing, SPIE Vol 2359, pp. 191–204, 1994.Google Scholar
  23. 23.
    D. L. Collins, A. C. Evans, Holmes and T.M. Peters, “Automatic 3D segmentation of neuroanatomical structures from MRI”, in Computational Imaging and Vision: Information Processing in Medical Imaging, vol. 2432, Y. Bizais, C. Barillot, and R. Di Paola, Eds.: Kluwer Academic Publishers, pp. 139–152, 1995.Google Scholar
  24. 24.
    G.E. Christensen, R.D. Rabbitt, M.I. Miller, S.C. Joshi, U. Grenander, T.A. Coogan, and D.C. Van Essen, “Topological properties of smooth anatomic maps”, in Computational Imaging and Vision: Information Processing in Medical Imaging, vol. 2432, Y. Bizais, C. Barillot, and R. Di Paola, Eds.: Kluwer Academic Publishers, pp. 101–112, 1995.Google Scholar
  25. 25.
    G. Subsol, J.P. Thirion, and N. Ayache, “Une méthode générale pour construire automatiquement des atlas anatomiques morphométriques à partir d'images médicales tridimensionnelles: application à un atlas du crâne”, presented at RFIA, Rennes, pp. 159–168, 1996.Google Scholar
  26. 26.
    E. Sokolowska and J. A. Newell, “Multi-Layered Image Representation: Structure and Application in Recognition of Parts of Brain Anatomy”, Pattern Recognition Letters, pp. 223–230, 1986.Google Scholar
  27. 27.
    H. H. Zachmann, “Interpretation of cranial MR images using a digital atlas of the human head”, in: Lemke HU, Rhodes M.L., Jaffe CC, Felix R. Eds., Computer Assisted Radiology, Springer-Verlag Berlin Heidelberg, pp. 283–4287, 1991.Google Scholar
  28. 28.
    I.C. Carlsen, M. Imme, M.H. Kuhn, K. Ottenberg and K.H. Schmidt, “Knowledge based Interpretation of cranial MR images”, in: Lemke HU, Inamura K., Jaffe CC, Felix R. Eds., Computer Assisted Radiology, Springer-Verlag Berlin Heidelberg, pp. 277–282, 1991.Google Scholar
  29. 29.
    K. Natarajan, M. G. Cawley, and J. A. Newell, “A knowledge based system paradigm for automatic interpretation of CT scan”, Medical informatics, vol. 16, pp. 167–181, 1991.Google Scholar
  30. 30.
    E. D. Lehmann, D. J. Hawkes, D. L. G. Hill, C. F. Bird, G. P. Robinson, and A. C. F. Colchester, “Computer aided interpretation of SPECT images of the brain using an MRI derived 3D neuroanatomical atlas”, Medical Informatics, vol. 16, pp. 151–166, 1991.Google Scholar
  31. 31.
    M. Staemmler, E. Claridge, and J. Cornelis, “SAMMIE — Software applied to multimodal images and education”, presented at IMAC 93, Berlin, pp. 91–98, 1993.Google Scholar
  32. 32.
    G. P. Robinson, A. C. F. Colchester, and L. D. Griffin, “Model-Based Recognition of Anatomical Objects from Medical Images”, in Lecture Notes in Comp. Science: Information Proc. in Med. Imag., vol. 687, H. Barrett and A. Gmitro, Eds.: Springer-Verlag, pp. 197–211, 1993.Google Scholar
  33. 33.
    J. C. Mazziotta, A. W. Toga, A. C. Evans, and P. Fox, “A Probabilistic Reference System for the Human Brain”, Application to the Human Brain Project: Phase I June 1993.Google Scholar
  34. 34.
    J. C. Mazziotta, A. W. Toga, A. C. Evans, P. Fox, and J. L. Lancaster, “A Probabilistic Atlas of the Human Brain: Theory and Rationale for its development”, Neuroimage, pp. 89–101, 1995.Google Scholar
  35. 35.
    H. G. Schmidt and H. P. A. Boshuizen, “On Acquiring Expertise in Medecine”, Education Psychological Review, pp. 205–221, 1993.Google Scholar
  36. 36.
    V. Prince, Vers une informatique cognitive dans les organisations, le rôle central du langage, Editions Masson, 1996.Google Scholar
  37. 37.
    V. O. Mittal and C. L. Paris, “Context: indentifying its elements from the communication point of view”, presented at Workshop on Using Knowledge in its context, IJCAI, Chambery, 1993.Google Scholar
  38. 38.
    J. Willamowski, “Modélisation de tâches pour la résolution de problèmes en coopération systèmeutilisateur”, Université Joseph Fourier Grenoble 1, 1994.Google Scholar
  39. 39.
    R. Simmons and R. Davis, “The Role of Knowledge and Representation in Problem Solving”, in Second Generation Expert Systems, J. M. David, J. P. Krivine, and R. Simmons, Eds.: Springer Verlag, pp. 27–45, 1993.Google Scholar
  40. 40.
    S. Garlatti, E. Montabord, B. Gibaud and C. Barillot, “A methodological approach for object knowledge bases”, Expert Systems 95, Cambridge, Edited by M.A. Bramer, J.L. Nealon, R. Milne, Research and Developments in Expert Systems XII, pp. 201–214, 1995.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • B. Gibaud
    • 1
  • S. Garlatti
    • 2
  • C. Barillot
    • 1
  • E. Faure
    • 2
  1. 1.Laboratoire SIMFaculté de MédecineRennesFrance
  2. 2.Laboratoire IASCENS Télécommunications de BretagneBrestFrance

Personalised recommendations