Advertisement

A society of goal-oriented agents for the analysis of living cells

  • Alain Boucher
  • Catherine Garbay
  • Anne Doisy
  • Xavier Ronot
Image and Signal Processing
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1211)

Abstract

This paper presents a new model for the segmentation and analysis of living cells. A multi-agent model has been developped for this application. It is based on a generic agent model, which is composed of different behaviors: perception, interaction and reproduction. The agent is further specialized to accomplish a specific goal. Different goals are defined from the different components of the cell images. The specialization specifies the parameters of the behaviors for the achievement of the agent's goal. From these goal-oriented agents, a society is defined, and it evolves dynamically as the agents are created and deleted. An internal manager is integrated in the agent to control the behavior's execution. It makes use of an event-driven scheme to manage the behavior priorities. The present design is mainly oriented toward image segmentation, but includes some features on tracking and motion analysis.

Keywords

Image Segmentation Internal Manager Nucleus Segmentation Nucleus Agent Reproduction Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. Baujard and C. Garbay. KISS: a multiagent segmentation system. Optical Engineering, 32(6):1235–1249, 1993.Google Scholar
  2. 2.
    F. Bellet, J.M. Salotti, and C. Garbay. Une approche opportuniste et coopérative pour la vision de bas niveau. Traitement du Signal, 12(5):479–494, 1995.Google Scholar
  3. 3.
    O. Boissier, Y. Demazeau, G. Masini, and H. Skaf. Une architecture multi-agents pour l'implémentation du bas niveau d'un système de compréhension de scènes. In 2ièmes journées francophones IAD et SMA, 1994. Voiron (France).Google Scholar
  4. 4.
    A. Boucher, A. Doisy, X. Ronot, and C. Garbay. Cell migration analysis after in vitro wounding injury with a multi-agent approach. Artificial Intelligence Review Journal. under revision.Google Scholar
  5. 5.
    A. Boucher and C. Garbay. A multi-agent system to segment living cells. In Proceedings of the 13th ICPR 96, volume 3, pages 558–562, 1996. Vienna (Austria).Google Scholar
  6. 6.
    R. A. Brooks. Intelligence without representation. Artificial Intelligence, 47:139–159, 1991.Google Scholar
  7. 7.
    F. Cloppet-Oliva and G. Stamon. Segmentation coopérative région/contour pour une analyse automatique d'images de cellules en culture. In Proceedings of 10e congrès RFIA, volume 2, pages 1063–1072, 1996.Google Scholar
  8. 8.
    J.-P. Cocquerez and S. Philipp. Analyse d'images: filtrage et segmentation. Masson, 1995.Google Scholar
  9. 9.
    R.B. Dickinson, S. Guido, and R.T. Tranquillo. Biased cell migration of fibroblasts exhibiting contact guidance in oriented collagen gels. Ann. Biomed. Eng., 22:342–356, 1994.Google Scholar
  10. 10.
    A. Doisy, S. Paillasson, P. Tracqui, F. Germain, F. Leitner, M. Robert-Nicoud, and X. Ronot. In vitro dynamics of chromatin organization and migration. Cell Biol. Toxicol., 12:363–366, 1996.Google Scholar
  11. 11.
    J. Ferber. Les systèmes multi-agents: vers une intelligence collective. InterEditions, 1995.Google Scholar
  12. 12.
    K.S. Fu and J.K. Mui. A survey on image segmentation. Pattern Recognition, 13(1):3–16, 1981.Google Scholar
  13. 13.
    Z. Guessoum and M. Dojat. A real-time agent model in a asynchronous-object environment. In Proceedings of MAAMAW, pages 190–203, January 1996.Google Scholar
  14. 14.
    S.H. Gwydir, H.M. Buettner, and S.M. Dunn. Non-rigid motion analysis of the growth cone using continuity splines. ITBM, 15(3):309–321, 1994.Google Scholar
  15. 15.
    H. Kondo, R. Matsuda, and Y. Yonezawa. Autonomous migration of human fetal skin fibroblasts into a denuded area in a cell monolayer is mediated by basic fibroblast growth factor and collagen. In Vitro Cell Dev. Biol., 29A:929–935, 1993.Google Scholar
  16. 16.
    F. Leitner, S. Paillasson, X. Ronot, and J. Demongeot. Dynamic functional and structural analysis of living cells: new tools for vital staining of nuclear DNA and for characterization of cell motion. Acta Biotheoritica, (43):299–317, 1995.Google Scholar
  17. 17.
    F. Leymarie and M.D. Levine. Tracking deformable objects in the plane using an active contour model. IEEE Trans. on PAMI, 15(6):617–634, 1993.Google Scholar
  18. 18.
    C.E. Liedtke, T. Gahm, F. Kappei, and B. Aeikens. Segmentation of microscopic cell scenes. AQCH, 9:197–211, 1987.Google Scholar
  19. 19.
    P. Maes. How to do the right thing. Connection Science Journal, 1(3), 1989.Google Scholar
  20. 20.
    S. Naudet, L. Nicolas, C. Faye, and M. Viala. Suivi temporel 3D d'objets en présence d'occultations dans une séquence d'images monoculaires. In Proceedings of 10e congrès RFIA, volume 2, pages 849–858, 1996.Google Scholar
  21. 21.
    N.R. Pal and S.K. Pal. A review on image segmentation. Pattern Recognition, 26(9):1277–1294, 1993.Google Scholar
  22. 22.
    F. Siegert, C.J. Weijer, A. Nomura, and H. Miike. A gradient method for the quantitative analysis of cell movement and tissue flow and its application to the analysis of multicellular Dictyostelium development. J. Cell Sci., (107):97–104, 1994.Google Scholar
  23. 23.
    L. Steels. Cooperation between distributed agents through self-organization. In DAI, volume 1, pages 175–196. Elsevier Science, 1990.Google Scholar
  24. 24.
    K. Wu, D. Gauthier, and M.D. Levine. Live cell image segmentation. IEEE Trans. on Bio. Eng., 42(1):1–12, 1995.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Alain Boucher
    • 1
  • Catherine Garbay
    • 1
  • Anne Doisy
    • 2
    • 3
  • Xavier Ronot
    • 2
    • 3
  1. 1.Laboratoire TIMC/IMAGGrenobleFrance
  2. 2.DyOGen (UPRES nℴ EA 2021)INSERM U309GrenobleFrance
  3. 3.Laboratoire de Neurobiologie du DéveloppementE.P.H.E.MontpellierFrance

Personalised recommendations