Advertisement

Temporal Abstractions for diabetic patients management

  • Cristiana Larizza
  • Riccardo Bellazzi
  • Alberto Riva
Temporal Reasoning and Planning
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1211)

Abstract

This paper outlines how Temporal Abstractions can be used to analyze and interpret longitudinal data coming from diabetic patients monitoring. We use temporal abstraction mechanisms to provide an abstract description of the patient's state useful to interpret the therapeutic response to the current protocol and to provide proper suggestions.

Keywords

Time Series Analysis Time Slice Temporal Abstraction Blood Glucose Level Increase State Abstraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allen J. F.: Towards a general theory of action and time. Artificial Intelligence 23 (1984) 123–154Google Scholar
  2. 2.
    Bellazzi, R., Cobelli, C., Gomez, E., Stefanelli, M.: The T-IDDM project: Telematic management of Insulin Dependent Diabetes Mellitus. Proc. of Health Telematics '95, M. Bracale, F. Denoth eds., Ischia (1995) 271–276.Google Scholar
  3. 3.
    Bellazzi, R., Larizza, C., Riva, A.: Cooperative Intelligent Data Analysis: an application to diabetic patients management. Proc. of IDAMAP '96, a workshop of ECAI 96, Budapest (1996) 1–6Google Scholar
  4. 4.
    Deutsch, T., Lehmann, E.D., Carson, E.R., Roudsari, A.V., Hopkins, K.D., Sönksen, P.: Time series analysis and control of blood glucose levels in diabetic patients. Comp. Meth. and Programs in Biomed. 41 (1994) 167–182.Google Scholar
  5. 5.
    The Diabetes Control and Complication Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus, The New England Journal of Medicine 14-329 (1993) 977–986Google Scholar
  6. 6.
    Larizza, C., Bernuzzi, G., Stefanelli, M.: A General Framework for Building Patient Monitoring Systems. Lecture Notes in Artificial Intelligence, P. Barahona, M. Stefanelli and J. Wyatt eds., Springer Verlag, Berlin (1995) 91–102Google Scholar
  7. 7.
    Keravnou, E.: Temporal asbtraction of medical data: Deriving periodicity. Proceedings of IDAMAP '96, a workshop of ECAI 96, Budapest (1996) 43–60Google Scholar
  8. 8.
    Miksch, S., Horn, W., Popow, C., Paky, F.: Therapy Planning Using Qualitative Trend Descriptions. Lecture Notes in Artificial Intelligence, P. Barahona, M. Stefanelli and J. Wyatt eds., Springer Verlag, Berlin (1995) 197–208Google Scholar
  9. 9.
    Riva, A., Bellazzi, R.: High level control strategies for diabetes therapy. Lecture Notes in Artificial Intelligence, P. Barahona, M. Stefanelli and J. Wyatt eds., Springer Verlag, Berlin (1995) 185–196Google Scholar
  10. 10.
    Riva, A., Bellazzi, R.: Learning Temporal Probabilistic Causal Models from Longitudinal Data, Artificial Intelligence in Medicine 8 (1996) 217–234Google Scholar
  11. 11.
    Shahar, Y., Musen, M.A.: Knowledge-Based Temporal Abstraction in Clinical Domains. Artificial Intelligence in Medicine 8 (1996) 267–298Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Cristiana Larizza
    • 1
  • Riccardo Bellazzi
    • 1
  • Alberto Riva
    • 2
  1. 1.Dipartimento di Informatica e SistemisticaUniversità di PaviaPaviaItaly
  2. 2.IRCCS Policlinico S.MatteoPaviaItaly

Personalised recommendations