Skip to main content

Parametric two-dimensional B-spline representation of vein and artery from 2.5D echography used to aid virtual echography

  • Analysis of Cardiac and Vascular Images
  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1205))

Abstract

This paper presents a method to model anatomical parts of the body. As we focus on the modelling of vein and artery surfaces, we have chosen to parametrize a cylindrical topology surface. The method is based on the approximation of surface with bicubic B-splines. The data used for the surface approximation are collected from 2.5D echography (ultrasonographic images located in 3D space). The set up for data collection is described in the paper. Our modelling gives realistic results. Adding the modelling of deformations induced by the pressure exerted by the echographic probe over the patient, we intend to use this method to carry out an echographic simulator.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Cinquin and al. Computer Assisted Medical Interventions at TIMC Laboratory: passive and semi-active aids. IEEE Engineering in Medicine and Biology magazine, special issue Robots in Surgery, 14(3):254–263, 1995.

    Google Scholar 

  2. D. Henry, J. Troccaz, and J.L. Bosson. Virtual Echography: Simulation of ultrasonographic examinations. In hans B. Sieburg suzanne J. Weghorst and karen S. Morgan, editors, proceedings of MMVR'4, pages 176–183, PO Box 23220 San Diego CA 92193 USA, january 1996. MMVR'4.

    Google Scholar 

  3. A. Colignon and M. Bethune. Echo-Doppler Diagnosis of Deep Venous Thrombosis. Vigot, 1992.

    Google Scholar 

  4. C. Barbe, J. Troccaz, B. Mazier, and S. Lavallee. Using 2.5D echography in computer assisted spine surgery. In IEEE, pages 160–161, San Diego, 1993. IEEE Engineering in Medicine and Biology Society Proceedings.

    Google Scholar 

  5. J. Sequeira, R. Ebel, and F. Schmitt. Three dimentional modeling of tree-like anatomical structures. In Proceedings IEEE EMBS'92, pages 59–64, 1992.

    Google Scholar 

  6. J. Lengyel, D.P. Greenberg, A. Yeug, and E. Alderman. Three-dimensional reconstruction and volume rendering of intravascular ultrasound slices imaged on a curved arterial path. In Computer vision, Virtual Reality, and Robotics in Medicine, pages 399–405. CVRMed, 1995.

    Google Scholar 

  7. D. Terzopoulos and H. Qin. Dynamic NURBS with Geometric Constraints for interactive sculpting. ACM Transactions on Graphics, 13(2):103–136, April 1994.

    Article  Google Scholar 

  8. P.J. Laurent and F. Utreras. An optimal smoothing of noisy broken data. Journal of Approximation Theory and its Applications, 2(2), 1986.

    Google Scholar 

  9. P.J.Laurent. Courbes ouvertes ou fermees par B-Splines regularisees. Technical report, TIM3-IMAG, Mars 1987.

    Google Scholar 

  10. C. de Boor. Bicubic spline interpolation. Journal of mathematics and physics, 41:212–218, 1962.

    Google Scholar 

  11. P. Dierckx. A fast algorithm for smoothing data on a regular grid using spline functions. SIAM Journal of numerical analysis, 19(6):1286–1404, december 1982.

    Article  Google Scholar 

  12. J. Duchon. Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces. Revue Francaise d'automatique, Informatique, Recherche Operationnelle, 10(12):5–12, 1976.

    Google Scholar 

  13. G. Champleboux. Utilisation des fonctions splines pour la mise au point d'un capteur tridimensionnel sans contact: quelques applications medicales (in french). PhD thesis, Grenoble University, July 1991.

    Google Scholar 

  14. P.G. Ciarlet. Introduction à l'analyse numérique matricielle et à l'optimisation. masson, 1985.

    Google Scholar 

  15. P.J. Laurent. Quadratic convex analysis and splines. Technical report, TIM3 — IMAG, September 1986.

    Google Scholar 

  16. D. Girard. A fast ”Monte-Carlo cross validation” procedure for large least square problem with noisy data. Numerische Mathematik, 56:1–23, 1989.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jocelyne Troccaz Eric Grimson Ralph Mösges

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Champleboux, G., Henry, D. (1997). Parametric two-dimensional B-spline representation of vein and artery from 2.5D echography used to aid virtual echography. In: Troccaz, J., Grimson, E., Mösges, R. (eds) CVRMed-MRCAS'97. CVRMed MRCAS 1997 1997. Lecture Notes in Computer Science, vol 1205. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0029245

Download citation

  • DOI: https://doi.org/10.1007/BFb0029245

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-62734-0

  • Online ISBN: 978-3-540-68499-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics