Skip to main content

On genuinely time bounded computations

  • Invited Presentations
  • Conference paper
  • First Online:
STACS 89 (STACS 1989)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 349))

Included in the following conference series:

Abstract

This survey paper presents a complexity theoretical approach to genuinely time bounded computations. Such computations are executed by random access machines with given set \(S \subseteq \{ + , - ,*,DIV,...\}\)of arithmetic operations. The uniform cost measure is assumed, and the input is given integer by integer, not bit by bit. “Genuinely” (also called “strongly” in the literature) means that we measure the time complexity T(n) as the worst case runtime over all inputs consisting of n integers (not of n bits). Computability and complexity now heavily depend on the operation set S. In this paper genuine complexity classes for given operation sets S are defined, following ideas due to Karpinski and the author from [KaM 88]. Furthermore, results on genuine computability, lower bound methods, as well as examples for complexity gaps and separated complexity classes are surveyed.

Supported in part by DFG-Grants ME 872/1-2 and WE 1066/2-1

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Babai,B. Just,F. Meyer auf der Heide, On the limits of computations with the floor function, Information and Computation 78(2), 99–107, 1988.

    Google Scholar 

  2. M.Ben-Or, Lower bounds for algebraic computation trees, 15th ACM-STOC, 80–86, 1983.

    Google Scholar 

  3. A. Borodin,I.Munro, The computational complexity of algebraic and numeric problems, Elsevier Computer Science Library, 1975.

    Google Scholar 

  4. L.Blum,M.Shub,S.Smale, On a theory of computation over the real numbers; NP-completeness, recursive functions and universal machines, to appear, FOCS, 1988.

    Google Scholar 

  5. D. Dobkin,R.L. Lipton, A lower bound of 1/2n 2 on linear search programs for the knapsack problem, JCSS 16, 417–421, 1975.

    Google Scholar 

  6. B.Just,F.Meyer auf der Heide,A.Wigderson, On computations with integer division, 5th STACS, 29–37, 1988.

    Google Scholar 

  7. M.Karpinski,F.Meyer auf der Heide, On the complexity of genuinely polynomial computations, in preparation, 1988.

    Google Scholar 

  8. N.Karmakar, A new polynomial time algorithm for linear programming, 16th ACM-STOC, 302–311, 1984.

    Google Scholar 

  9. L.G. Khachiyan, A polynomial algorithm for linear programming, Soviet Mathematics Declady 20(1), 191–194, 1979.

    Google Scholar 

  10. F. Meyer auf der Heide, A polynomial linear search algorithm for the n-dimensional knapsack problem, J.ACM 31(3), 668–676, 1984.

    Google Scholar 

  11. F. Meyer auf der Heide, Lower bounds for solving linear Diophantine equations on random access machines, J. ACM 32(4), 929–937, 1985.

    Google Scholar 

  12. F. Meyer auf der Heide, Simulating probabilistic by deterministic algebraic computation trees, TCS 41, 325–330, 1985.

    Google Scholar 

  13. F. Meyer auf der Heide, Fast algorithms for n-dimensional restrictions of hard problems, J.ACM 35(3), 740–747, 1988.

    Google Scholar 

  14. Y.V. Matijasevic, Enumerable Sets are Diophantine, Soviet Mathematical Dok lady II, 354–357, 1970.

    Google Scholar 

  15. N. Megiddo, Towards a strongly polynomial algorithm for linear programming, SIAM J. Comp. 12, 347–353, 1983.

    Google Scholar 

  16. S. Meiser, Suche in einem Arrangement von Hyperebenen, Diplomarbeit, Universität des Saarlandes, Saarbrücken, 1988.

    Google Scholar 

  17. J. Milnor, On the Betti numbers of real varieties, Proc. Amer. Math. Soc. 15, 275–280, 1964.

    Google Scholar 

  18. D.C.Oppen, Elementary bounds for Presburger arithmetic, 5th ACM-STOC, 34–37, 1973.

    Google Scholar 

  19. C.H. Papadimitriou,K. Steiglitz, Combinatorial optimization: algorithms and complexity, Prentice Hall, Englewood Cliffs, New Jersey, 1982.

    Google Scholar 

  20. E. Reingold, On the optimality of some set algorithms, J.ACM 19, 649–659, 1972.

    Google Scholar 

  21. A.Schönhage, On the power of random access machines, 6th ICALP, 520–529, 1979.

    Google Scholar 

  22. J.Simon, Division is good, 20th IEEE-FOCS, 411–420, 1979.

    Google Scholar 

  23. E.Specker, V.Strassen, Komplexität von Entscheidungsproblemen, Springer Lecture Notes 43, 1976.

    Google Scholar 

  24. V. Strassen, Berechnung und Programm II, Acta Informatica 2, 64–79, 1973.

    Google Scholar 

  25. V. Strassen, Algebraische Berechnungskomplexität, Perspectives in Mathematics, Anniversary of Oberwolfach 1984, Birkhäuser Verlag, Basel, 1984.

    Google Scholar 

  26. J.M. Steele, A.C. Yao, Lower bounds for algebraic decision trees, J. of Algorithms 3, 1–8, 1982.

    Google Scholar 

  27. E. Tardos, A strongly polynomial algorithm to solve combinatorial linear programs, Oper. Res. 34, 250–256, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

B. Monien R. Cori

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Meyer auf der Heide, F. (1989). On genuinely time bounded computations. In: Monien, B., Cori, R. (eds) STACS 89. STACS 1989. Lecture Notes in Computer Science, vol 349. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0028969

Download citation

  • DOI: https://doi.org/10.1007/BFb0028969

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-50840-3

  • Online ISBN: 978-3-540-46098-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics