Advertisement

Parametric search and locating supply centers in trees

  • Greg N. Frederickson
Session 10 Invited Presentation
Part of the Lecture Notes in Computer Science book series (LNCS, volume 519)

Abstract

Linear-time and -space algorithms are presented for solving three versions of the p-center problem in a tree. The techniques are an application of parametric search.

Keywords

Parametric Search Demand Point Feasibility Test Large Index Tree Partitioning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AASS]
    P. K. Agarwal, B. Aronov, M. Sharir, and S. Suri. Selecting distances in the plane. April 1990.Google Scholar
  2. [AP]
    E. M. Arkin and C. H. Papadimitriou. On the complexity of circulations. J. Algorithms, 7:134–145, 1986.Google Scholar
  3. [BPS]
    R. I. Becker, Y. Perl, and S. R. Schach. A shifting algorithm for min-max tree partitioning. J. ACM, 29:58–67, 1982.Google Scholar
  4. [CT]
    R. Chandrasekaran and A. Tamir. Polynomially bounded algorithms for locating p-centers on a tree. Math. Prog., pages 304–315, 1982.Google Scholar
  5. [C1]
    R. Cole. Partitioning point sets in arbitrary dimensions. Theor. Comput. Sci., 49:239–265, 1987.Google Scholar
  6. [C2]
    R. Cole. Slowing down sorting networks to obtain faster sorting algorithms. J. ACM, 34:200–208, 1987.Google Scholar
  7. [CSSS]
    R. Cole, J. S. Salowe, W. L. Steiger, and E. Szemeredi. An optimal-time algorithm for slope selection. SIAM J. Comput., 18:792–810, 1989.Google Scholar
  8. [CSY]
    R. Cole, M. Sharir, and C. K. Yap. On k-hulls and related problems. SIAM J. Comput., 17:61–77, 1987.Google Scholar
  9. [F1]
    G. N. Frederickson. Optimal algorithms for partitioning trees and locating p-centers in trees. Technical report CSD-TR-1029, Purdue University, 1990.Google Scholar
  10. [F2]
    G. N. Frederickson. Optimal algorithms for tree partitioning. In Proc. 2nd ACM-SIAM Symposium on Discrete Algorithms, pages 168–177, 1991.Google Scholar
  11. [FJ1]
    G. N. Frederickson and D. B. Johnson. Finding kth paths and p-centers by generating and searching good data structures. J. Algorithms, 4:61–80, 1983.Google Scholar
  12. [FJ2]
    G.N. Frederickson and D. B. Johnson. Generalized selection and ranking: sorted matrices. SIAM J. on Computing, 13:14–30, 1984.Google Scholar
  13. [Go1]
    A. J. Goldman. Optimal center location in simple networks. Transport. Sci., 5:212–233, 1971.Google Scholar
  14. [Go2]
    A. J. Goldman. Minimax location of a facility in an undirected tree graph. Transport. Sci., 6:407–418, 1972.Google Scholar
  15. [Gu]
    D. Gusfield. Parametric combinatorial computing and a problem of program module distribution. J.ACM, 30:551–563, 1983.Google Scholar
  16. [Hk]
    S. L. Hakimi. Optimum locations of switching centers and the absolute centers and medians of a graph. Operations Res., 12:450–459, 1964.Google Scholar
  17. [Hn1]
    G. Y. Handler. Minimax location of a facility in an undirected tree graph. Transport. Sci., 7:287–293, 1973.Google Scholar
  18. [Hn2]
    G. Y. Handler. Finding two-centers of a tree: the continuous case. Transport. Sci., 12:93–106, 1978.Google Scholar
  19. [HT]
    R. Hassin and A. Tamir. Efficient algorithms for optimization and selection on series-parallel graphs. SIAM J. Alg. Disc. Meth., 7:379–389, 1986.Google Scholar
  20. [HS]
    D. H. Hochbaum and D. B. Schmoys. Approximation algorithms for bottleneck problems. J. ACM, 33:533–550, 1986.Google Scholar
  21. [KH]
    O. Kariv and S. L. Hakimi. An algorithmic approach to network location problems. SIAM J. Appl. Math., 37:513–538, 1979.Google Scholar
  22. [LS]
    C. Lo and W. Steiger. An optimal-time algorithm for ham-sandwich cuts in the plane. September 1990.Google Scholar
  23. [M]
    N. Megiddo. Applying parallel computation algorithms in the design of serial algorithms. J. ACM, 30:852–865, 1983.Google Scholar
  24. [MT]
    N. Megiddo and A. Tamir. New results on the complexity of p-center problems. SIAM J. Comput., 12:751–758, 1983.Google Scholar
  25. [MTZC]
    N. Megiddo, A. Tamir, E. Zemel, and R. Chandrasekaran. An O(n log2 n) algorithm for the kth longest path in a tree with applications to location problems. SIAM J. Comput., 10:328–337, 1981.Google Scholar
  26. [PeS]
    Y. Perl and S. R. Schach. Max-min tree partitioning. J. ACM, 28:5–15, 1981.Google Scholar
  27. [PeS][1]
    R. Pollack and M. Sharir. Computing the geodesic center of a simple polygon. Technical Report 231, Courant Institute, September 1986.Google Scholar
  28. [R]
    M. Reichling. On the detection of a common intersection of k-convex polyhedra. Lect. Notes Comput. Sci., 333:180–187, 1988.Google Scholar
  29. [S]
    J. S. Salowe. L-infinity interdistance selection by parametric search. Inf. Proc. Lett., 30:9–14, 1989.Google Scholar
  30. [SS]
    J. T. Schwartz and M. Sharir. Finding effective ‘force-targets’ for two-dimensional multifinger frictional grips. Technical Report 379, Courant Institute, June 1988.Google Scholar
  31. [Z]
    E. Zemel. A linear time randomizing algorithm for searching ranking functions. Algorithmica, 2:81–90, 1987.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Greg N. Frederickson
    • 1
  1. 1.Department of Computer SciencePurdue UniversityWest Lafayette

Personalised recommendations