Skip to main content

Ray-shooting and isotopy classes of lines in 3-dimensional space

  • Conference paper
  • First Online:
Algorithms and Data Structures (WADS 1991)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 519))

Included in the following conference series:

Abstract

A uniform approach to problems involving lines in 3-dimensional space is presented. This approach is based on mapping lines in R 3 into points and hyperplanes in 5-dimensional projective space (Plücker space). We improve previously known results on the following problems:

  1. 1.

    Preprocess n triangles so as to efficiently answer the query: “Given a ray, which is the first triangle hit?” (Ray-shooting problem). We discuss the ray-shooting problem for both disjoint and non-disjoint triangles and several space/time trade offs.

  2. 2.

    Efficiently detect the first face hit by any ray in a set of axis-oriented polyhedra.

  3. 3.

    Preprocess n lines (segments) so as to efficiently answer the query “Given 2 lines, is it possible to move one into the other without crossing any of the initial lines (segments)?” (Isotopy problem). If the movement is possible produce an explicit representation of it.

  4. 4.

    Construct the arrangement generated by n intersecting triangles in 3-space in an output-sensitive way, with a subquadratic overhead term.

  5. 5.

    Count the number of pairs of intersecting lines in a set of n lines in space.

Research supported by NSF grant CCR-8901484.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Aronov, J. Matoušek, and M. Sharir. On the sum of squares of cell complexities in hyperplane arrangements. To appear in the Proceedings of the 7th ACM Symposium on Computational Geometry, 1991.

    Google Scholar 

  2. P. K. Agarwal and M. Sharir. Applications of a new space partitioning technique. To appear in the Proceedings of the 1991 Workshop on Algorithms and Data Structures, 1991.

    Google Scholar 

  3. B. Aronov and M. Sharir. On the zone of a surface in an hyperplane arrangement. To appear in the Proceedings of the 1991 Workshop on Algorithms and Data Structures, 1991.

    Google Scholar 

  4. B. Chazelle and H. Edelsbrunner. An optimal algorithm for intersecting line segments in the plane. In Proc. of the 29th Ann. Symp. on Foundations of Computer Science, 1988.

    Google Scholar 

  5. B. Chazelle, H. Edelsbrunner, L. Guibas, and M. Sharir. Lines in space: combinatorics, algorithms and applications. In Proc. of the 21st Symposium on Theory of Computing, pages 382–393, 1989.

    Google Scholar 

  6. B. Chazelle, H. Edelsbrunner, L. Guibas, and M. Sharir. A singly exponential stratification scheme for real semi-algebraic varieties and its applications. In Proceedings of the 16th International Colloquium on Automata, languages and Programming, pages 179–193, 1989. In Springer Verlag LNCS 372.

    Google Scholar 

  7. B. Chazelle. Fast searching in a real algebraic manifold with applications to geometric complexity, volume 185 of Lecture notes in computer science, pages 145–156. Springer Verlag, 1985.

    Google Scholar 

  8. K.L Clarkson. New applications of random sampling in computational geometry. Discrete Computational Geometry, (2):195–222, 1987.

    Google Scholar 

  9. B. Chazelle, M. Sharir, and E. Welzl. Quasi-optimal upper bounds for simplex range searching and new zone theorems. In Proceedings of the 6th ACM Symposium on Computational Geometry, pages 23–33, 1990.

    Google Scholar 

  10. [dBHO+91] M. de Berg, D. Halperlin, M. Overmars, J. Snoeyink, and M. van Kreveld. Efficient ray-shooting and hidden surface removal. To appear in Procedings of the 7th Annual Symposium on Computational Geometry, 1991.

    Google Scholar 

  11. D. Dobkin and D. Kirkpatrick. Determining the separation of preprocessed polyhedra: a unified approach. In Proc. of the 17th International Colloqium on Automata, Languages and Programming, pages 400–413, 1990.

    Google Scholar 

  12. H. Edelsbrunner, L. Guibas, and M. Sharir. The complexity of many faces in arrangements of lines and segments. In Proceedings of the 4th ACM Symposium on Computational Geometry, pages 44–55, 1988.

    Google Scholar 

  13. H. Edelsbrunner, H. Mauer, F. Preparata, E. Welzl, and D. Wood. Stabbing line segments. BIT, (22):274–281, 1982.

    Google Scholar 

  14. L. Guibas, M. Overmars, and M. Sharir. Ray shooting, implicit point location and related queries in arrangements of segments. Technical Report TR433, Courant Institute, 1989.

    Google Scholar 

  15. J. Matouěk. Cutting hyperplane arrangements. In Proceedings of the 6th ACM Symposium on Computational Geometry, pages 1–9, 1990.

    Google Scholar 

  16. M. McKenna and J. O'Rourke. Arrangements of lines in 3-space: A data structure with applications. In Proceedings of the 4th annual Symposium on Computational Geometry, pages 371–380, 1988.

    Google Scholar 

  17. M. Pellegrini. Stabbing and ray shooting in 3 dimensional space. In Proceedings of the 6th ACM Symposium on Computational Geometry, pages 177–186, 1990.

    Google Scholar 

  18. M. Pellegrini. Combinatorial and Algorithmic Analysis of Stabbing and Visibility Problems in 3-Dimensional Space. PhD thesis, New York University-Courant Institute of Mathematical Sciences, February 1991.

    Google Scholar 

  19. M. Pellegrini and P. Shor. Finding stabbing lines in 3-dimensional space. In Proceedings of the Second SIAM-ACM Symposium on Discrete Algorithms, 1991.

    Google Scholar 

  20. D. M. H. Sommerville. Analytical geometry of three dimensions. Cambridge, 1951.

    Google Scholar 

  21. J.T. Schwartz and M. Sharir. On the piano mover's problem: II. General techniques for computing topological properties of real algebraic manifolds. Adv. in Appl. Math, 4:298–351, 1983.

    Google Scholar 

  22. J. Stolfi. Primitives for computational geometry. Technical Report 36, Digital SRC, 1989.

    Google Scholar 

  23. R.E. Tarjan. Data Structures and Network Algorithms, volume 44 of CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Frank Dehne Jörg-Rüdiger Sack Nicola Santoro

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pellegrini, M. (1991). Ray-shooting and isotopy classes of lines in 3-dimensional space. In: Dehne, F., Sack, JR., Santoro, N. (eds) Algorithms and Data Structures. WADS 1991. Lecture Notes in Computer Science, vol 519. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0028246

Download citation

  • DOI: https://doi.org/10.1007/BFb0028246

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54343-5

  • Online ISBN: 978-3-540-47566-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics