A mixed approach of revision in propositional calculus

  • Odile Papini
  • Antoine Rauzy
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 747)


In this paper, we focus on minimal change in the revision of knowledge bases represented by propositional formulas. We first present a quick survey of semantic and syntactic approaches of revision, we then propose a mixed approach of revision which uses both semantic and syntactic means.


Knowledge Base Revision Operation Belief Revision Propositional Variable Fast Food Restaurant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Alchourron, P. Gärdenfors, D. Makinson. On the logic of theory change: Partial meet functions for contraction and revision. Journal of Symbolic Logic 50:510–530, 1985.Google Scholar
  2. 2.
    A. Bordiga. Language features for flexible handling of exceptions in information systems. ACM Trans. Database Syst.,(10):563–603, 1985.Google Scholar
  3. 3.
    M. Dalal. Investigations into a theory of knowledge base revision. Proceedings of the Seventh National Conference on Artificial Intelligence,:475–479, 1988.Google Scholar
  4. 4.
    P. Gärdenfors. Knowledge in flux: modelling the dynamics of epistemic states. MIT Press, 1988.Google Scholar
  5. 5.
    S. Jeannicot, L. Oxusoff, A. Rauzy. Evaluation sémantique en calcul propositionnel: une propriété de coupure pour rendre efficace la procédure de Davis et Putnam. Revue d'Intelligence Artificielle,(2):1 41–60, 1988.Google Scholar
  6. 6.
    H. Katsuno, A. Mendelzon. Propositional knowledge base revision and minimal change. Artificial Intelligence,(52):263–294, 1991.Google Scholar
  7. 7.
    B. Nebel. A knowledge level analysis of belief revision. Proceedings of the 1st International Conference on Principles of Knowledge Representation and Reasoning,R.J. Brachman,H.J. Levesque, and R. Reiter editors. Toronto. Ontario.,:301–311, 1989.Google Scholar
  8. 8.
    B. Nebel. Belief revision and default reasoning: syntax-based approaches. Proceedings of Knowledge Representation,:30 417–427, 1991.Google Scholar
  9. 9.
    L. Oxusoff, A. Rauzy. Evaluation sémantique en calcul propositionnel. Thèse de doctorat. GIA Université d'Aix-Marseille II. Luminy, 1989.Google Scholar
  10. 10.
    O. Papini. Revision in propositional calculus. Proceedings of ECSQAU 91. Lectures Notes in Computer Sciences.R.Kruse P.Siegel Eds. Springer Verlag,(548):272–276, 1991.Google Scholar
  11. 11.
    O. Papini. A complete revision function in propositional calculus. Proceedings of ECAI 92. B.Neumann Ed. J. Wiley & sons,339–343, 1992.Google Scholar
  12. 12.
    Lea Sombe. Revision de bases de connaissances. Actes des 4emes journes nationales du PRC-GDR IA. Marseille,207–235, 1992.Google Scholar
  13. 13.
    M. Winslett. Reasoning about action using a possible models approach. Proceedings of the Seventh National Conference on Artificial Intelligence,:89–93, 1988.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Odile Papini
    • 1
  • Antoine Rauzy
    • 2
  1. 1.G.I.A. Université d'Aix-Marseille IIMarseille cédex 9France
  2. 2.La.B.R.I. CNRS Université de Bordeaux ITalence cédexFrance

Personalised recommendations