Skip to main content

Resolution and the weak pigeonhole principle

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1414))

Abstract

We give new upper bounds for resolution proofs of the weak pigeonhole principle. We also give lower bounds for tree-like resolution proofs. We present a normal form for resolution proofs of pigeonhole principles based on a new monotone resolution rule.

Supported in part by NSF grant DMS-9503247 and US-Czech Science and Technology grant 93-025.

Research supported by NSF grant CCR-9457782.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Ajtai, The complexity of the pigeonhole principle, in Proceedings of the 29-th Annual IEEE Symposium on Foundations of Computer Science, 1988, pp. 346–355.

    Google Scholar 

  2. P. Beame, R. Impagliazzo, J. Krajíček, T. Pitassi, P. Pudlák, and A. Woods, Exponential lower bounds for the pigeonhole principle, in Proceedings of the 24th Annual ACM Symposium on Theory of Computing, 1992, pp. 200–220.

    Google Scholar 

  3. S. R. Buss, Polynomial size proofs of the propositional pigeonhole principle, Journal of Symbolic Logic, 52 (1987), pp. 916–927.

    Google Scholar 

  4. S. R. Buss and György Turán, Resolution proofs of generalized pigeonhole principles, Theoretical Computer Science, 62 (1988), pp. 311–317.

    Article  Google Scholar 

  5. S. A. Cook and R. A. Reckhow, The relative efficiency of propositional proof systems, Journal of Symbolic Logic, 44 (1979), pp. 36–50.

    Google Scholar 

  6. A. Haken, The intractability of resolution, Theoretical Computer Science, 39 (1985), pp. 297–308.

    Article  Google Scholar 

  7. J. Krajicek, P. Pudlák, and A. Woods, Exponential lower bound to the size of bounded depth Frege proofs of the pigeonhole principle, Random Structures and Algorithms, 7 (1995), pp. 15–39.

    Google Scholar 

  8. J. B. Paris and A. J. Wilkie, Δ0 sets and induction, in Open Days in Model Theory and Set Theory, W. Guzicki, W. Marek, A. Pelc, and C. Rauszer, eds., 1981, pp. 237–248.

    Google Scholar 

  9. J. B. Paris, A. J. WILKIE, and A. R. Woods, Provability of the pigeonhole principle and the existence of infinitely many primes, Journal of Symbolic Logic, 53 (1988), pp. 1235–1244.

    Google Scholar 

  10. T. Pitassi, P. Beame, and R. Impagliazzo, Exponential lower bounds for the pigeonhole principle, Computational Complexity, 3 (1993), pp. 97–140.

    Article  Google Scholar 

  11. A. Razborov, A. Widgerson and A. Yao, Read-once branching programs, rectangular proofs of the pigeon-hole principle and the transversal calculus, in Proceedings of the 29th Annual ACM Symposium on Theory of Computing, 1997, pp. 739–748.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Mogens Nielsen Wolfgang Thomas

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Buss, S., Pitassi, T. (1998). Resolution and the weak pigeonhole principle. In: Nielsen, M., Thomas, W. (eds) Computer Science Logic. CSL 1997. Lecture Notes in Computer Science, vol 1414. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0028012

Download citation

  • DOI: https://doi.org/10.1007/BFb0028012

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64570-2

  • Online ISBN: 978-3-540-69353-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics