Skip to main content

The gradient hypothesis and other models of carrier-mediated active transport

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology, Volume 78

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 78))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alvarado, F.: Hypothesis for the interaction of phlorizin and phloretin with membrane carriers for sugars. Biochim. biophys. Acta (Amst.) 135, 483–495 (1967)

    Google Scholar 

  • Alvarado, F.: Sodium-driven transport: a reevaluation of the sodium-gradient hypothesis. In: Intestinal Ion Transport. Robinson, J.W.L. (ed.). Medical and Technical Publishing Co. Lancaster: 1976

    Google Scholar 

  • Alvarado, F., Crane, R.K.: Phlorizin as a competitive inhibitor of the active transport of sugars by hamster small intestine, in vitro. Biochim. biophys. Acta (Amst.) 56, 170–172 (1962)

    Google Scholar 

  • Armstrong, W. McD., Byrd, B.J., Hamang, P.M.: The Na+ gradient and D-galactose accumulation in epithelial cells of bullfrog small intestine. Biochim. biophys. Acta, (Amst.) 33, 237–241 (1973)

    Google Scholar 

  • Aronson, P.S., Sacktor, B.: The Na+ gradient-dependent transport of D-glucose in renal brush border membranes. J. biol. Chem. 250, 6032–6039 (1975)

    Google Scholar 

  • Barany, E., Sperber, E.: Absorption of glucose against a concentration gradient by the small intestine of the rabbit. Scand. Arch. Physiol. 81, 290–299 (1939)

    Google Scholar 

  • Barnes, E.M., Jr., Kaback, H.R.: β-galactoside transport in bacterial membrane preparations: energy coupling via membrane-bound D-lactic dehydrogenase. Proc. nat. Acad. Sci. (Wash.) 66, 1190–1198(1970)

    Google Scholar 

  • Barry, R.J.C., Dikstein, S., Matthews, J., Smyth, D.H., Wright, E.M.: Electrical potentials associated with intestinal sugar transfer. J. Physiol. (Lond.) 171, 316–338 (1964)

    Google Scholar 

  • Barry, R.J.C., Matthews, J., Smyth, D.H., Wright, E.M.: Potential difference and intestinal transport of solutes and water. J. Physiol. (Lond.) 161, 17–18P (1961)

    Google Scholar 

  • Beck, J.C., Sacktor, B.: Energetics of the Na+-dependent transport of D-glucose in renal brush border membrane vesicles. J. biol. Chem. 250, 8674–8680 (1975)

    Google Scholar 

  • Bihler, I., Crane, R.K.: Studies on the mechanism of intestinal absorption of sugars. V. The influence of several cations and anions on the active transport of sugars, in vitro, by various preparations of hamster small intestine. Biochim. biophys. Acta (Amst.) 59, 78–93 (1962)

    Google Scholar 

  • Bihler, I., Hawkins, K.A., Crane, R.K.: Studies on the mechanism of intestinal absorption of sugars. VI. The specificity and other properties of Na+-dependent entrance of sugars into intestinal tissue under anaerobic conditions, in vitro. Biochim. biophys. Acta. (Amst.) 59, 94–102 (1962).

    Google Scholar 

  • Boos, W.: Bacterial Transport. Ann. Rev. Biochem. 43, 123–146 (1974)

    Google Scholar 

  • Bosackova, J.: Sodium ion stimulation and potassium ion inhibition of intestinal active sugar transport. Fed. Proc. 22, 416 (1963)

    Google Scholar 

  • Bosackova, J., Crane, R.K.: Studies on the mechanism of intestinal absorption of sugars. IX. Intracellular sodium concentrations and active sugar transport by hamster small intestine in vitro. Biochim.biophys. Acta (Amst.) 102, 436–441 (1965)

    Google Scholar 

  • Bretscher, M.S.: A major protein which spans the human erythrocyte membrane. J. molec. 59, 351–357 (1971)

    Google Scholar 

  • Busse, D., Elsas, L.J., Rosenberg, L.E.: Uptake of D-glucose by renal tubule membranes. J. biol. Chem. 247, 1188–1193 (1972)

    Google Scholar 

  • Caspary, W.F., Stevenson, N.R., Crane, R.K.: Evidence for an intermediate step in carrier-mediated sugar translocation across the brush border membrane of hamster small intestine. Biochim. biophys. Acta (Amst.) 193, 168–178 (1969)

    Google Scholar 

  • Christensen, H.N.: Reactive sites and biological transport. Advanc. Protein Chem. 15, 239–314 (1960)

    Google Scholar 

  • Christensen, H.N.: Some special kinetic problems of transport. Advanc. Enzymol. 36, 1–20 (1969)

    Google Scholar 

  • Christensen, H.N.: Linked ion and amino acid transport. In: Membranes and Ion Transport. Bittar, E.E. (ed.), Vol. I, pp. 365–395. London: Wiley-Interscience 1970

    Google Scholar 

  • Christensen, H.N., Cespedes, C., Handlogten, M.E., Ronquist, G.: Energization of amino acid transport studied for the Ehrlich ascites tumor cells. Biochim. biophys. Acta (Amst.) 300, 487–522 (1973)

    Google Scholar 

  • Christensen, H.N., Cespedes, C., Handlogten, M.E., Ronquist, G.: Modified transport substrates as probes for intramembrane gradients. Ann. N.Y. Acad. Sci. 227, 355–379 (1974)

    Google Scholar 

  • Christensen, H.N., Handlogten, M.E.: A cycle of deprotonation and reprotonation energizing amino-acid transport? Proc. nat. Acad. Sci. (Wash.) 72, 23–27 (1975)

    Google Scholar 

  • Christensen, H.N., Riggs, T.R.: Concentrative uptake of amino acids by the Ehrlich mouse ascites carcinoma cell. J. biol. Chem. 194, 57–68 (1952)

    Google Scholar 

  • Clarkson, T.W., Cross, A.C., Toole, S.: Dependence on substrate of the electrical potential across the isolated gut. Nature (Lond.) 191, 501–502 (1961)

    Google Scholar 

  • Clausen, T., Elbrink, J., Dahl-Hansen, A.B.: The relationship between the transport of glucose and cations across cell membranes in isolated tissue. IX. The role of cellular calcium in the activation of the glucose transport system in rat soleus muscle. Biochim. biophys. Acta (Amst.) 375, 1292–1308(1975)

    Google Scholar 

  • Cockburn, M., Earnshaw, P., Eddy, A.A.: The stoicheiometry of the absorption of protons with phosphate and L-glutamate by yeasts of the genus Saccharomyces. Biochem. J. 146, 705–712 (1975)

    Google Scholar 

  • Cohen, G.N., Monod, J.: Bacterial permeases. Bact. Rev. 21, 169–194 (1957)

    Google Scholar 

  • Colombini, M., Johnstone, R.M.: Na+-dependent amino acid transport in plasma membrane vesicles from Ehrlich ascites cells. J. Membrane Biol. 15, 261–276 (1974a)

    Google Scholar 

  • Colombini, M., Johnstone, R.M.: Na+-gradient-stimulated AIB Transport in membrane vesicles from Ehrlich ascites cells. J. Membrane Biol. 18, 315–334 (1974b)

    Google Scholar 

  • Colowick, S.P., Womack, F.C.: Binding of diffusible molecules by macromolecules: Rapid measurement by rate of dialysis. J. biol. Chem. 244, 744–779 (1969)

    Google Scholar 

  • Cori, C.F.: The fate of sugar in the animal body. I. The rate of absorption of hexoses and pentoses from the intestinal tract. J. biol. Chem. 66, 691–715 (1925)

    Google Scholar 

  • Cort, J.H., Kleinzeller, A.: The effect of denervation, pituitrin and varied cation concentration gradients on the transport of cations and water in kidney slices. J. Physiol. (Lond.) 133, 287–300 (1956)

    Google Scholar 

  • Crane, R.K.: Intestinal Absorption of Sugars. Physiol. Rev. 40, 789–825 (1960)

    Google Scholar 

  • Crane, R.K.: Hypothesis of mechanism of intestinal active transport of sugars. Fed. Proc. 21, 891–895 (1962)

    Google Scholar 

  • Crane, R.K.: Uphill outflow of sugar from intestinal epithelial cells induced by reversal of the Na+ gradient: its significance for the mechanism of Na+-dependent active transport. Biochem. biophys. Res. Commun. 17, 481–485 (1964)

    Google Scholar 

  • Crane, R.K.: Na+-dependent transport in the intestine and other animal tissues. Fed. Proc. 24, 1000–1006 (1965)

    Google Scholar 

  • Crane, R.K.: Gradient coupling and the membrane transport of water-soluble compounds: A general biological mechanism? In: Protides of the Biological Fluids, Sect. A. Membranes. III. Transport, pp. 227–235. Amsterdam: Elsevier Publishing Co. 1967

    Google Scholar 

  • Crane, R.K.: The Physiology of the intestinal absorption of sugars. In: Physiological Effects of Food Carbohydrates. ACS Symposium Series, No. 15, pp. 1–19 (1975)

    Google Scholar 

  • Crane, R.K.: Digestion and Absorption: Water soluble organics. In: Gastrointestinal Physiology. MTP International Review of Science, Chap. 11 (In press)

    Google Scholar 

  • Crane, R.K., Caspary, W.: Evidence for an Intermediate step in sugar translocation across the brush border membrane. In: Intestinal Transport of Electrolytes, Amino Acids and Sugars. Armstrong, W. McD. et al. (ed.), pp. 130–143. Springfield Ill: Charles C Thomas 1971

    Google Scholar 

  • Crane, R.K., Field, R.A., Cori, C.F.: Studies on tissue permeability. I. The penetration of sugars into the Ehrlich ascites tumor cell. J. biol. Chem. 222, 649–662 (1957)

    Google Scholar 

  • Crane, R.K., Forstner, G., Eichholz, A.: Studies of the mechanism of the intestinal absorption of sugars. X. An effect of Na+ concentration on the apparent Michaelis constants for intestinal sugar transport, in vitro. Biochim. biophys. Acta (Amst.) 109, 467–477 (1965)

    Google Scholar 

  • Crane, R.K., Krane, S.M.: On the mechanism of intestinal absorption of sugars. Biochim biophys. Acta (Amst.) 20, 568–569 (1956)

    Google Scholar 

  • Crane, R.K., Krane, S.M.: Studies on the mechanism of the intestinal active transport of sugars. Biochim. biophys. Acta (Amst.) 31, 397–401 (1959)

    Google Scholar 

  • Crane, R.K., Malathi, P., Preiser, H.: (1976a) Transport properties of the brush border membrane: Reconstitution. Presented at FEBS Symposium on the Biochemistry of Membrane Transport, Zürich, July 18–23, 1976

    Google Scholar 

  • Crane, R.K., Malathi, P., Preiser, H.: Reconstitution of Na+-dependent glucose transport in liposome vesicles with Triton X-100 extract of hamster intestinal brush border membranes. Biochem. biophys. Res. Commun. (1976b) 71, 1010–1016 (1976)

    Google Scholar 

  • Crane, R.K., Malathi, P., Preiser, H.: Reconstitution of Na+-dependent glucose transport in liposome vesicles with Triton-100 extract of rabbit kidney tubular brush border membranes. FEBS Letters (1976c) 67, 214–216 (1976)

    Google Scholar 

  • Crane, R.K., Menard, D., Preiser, H., Cerda, J.J.: The molecular basis of brush border membrane disease. In: Membranes and Disease. Bolis, L., Hoffman, J.F., Leaf, A. (eds.), pp. 229–241. New York: Raven Press 1976d

    Google Scholar 

  • Crane, R.K., Miller, D., Bihler, I.: The restrictions on the possible mechanism of intestinal active transport of sugars. In: Membrane Transport and Metabolism. Kotyk, A. (ed.), pp. 439–449. Prague: Czechoslovak Acad. of Sci. Press 1961

    Google Scholar 

  • Csaky, T.Z.: Significance of sodium ions in active intestinal transport of nonelectrolytes. Amer. J. Physiol. 201, 999–1001 (1961)

    Google Scholar 

  • Csaky, T.Z., Hartzog, H.G. III, Fernald, G.W.: Effect of digitalis on active intestinal sugar transport. Amer. J. Physiol. 200, 459–460 (1961)

    Google Scholar 

  • Csaky, T.Z., Prachuabmoh, K., Eiseman, B., Ho, P.M.: The effect of digitalis on the renal tubular transport of glucose in normal and in heartless dogs. J. Pharmacol. exp. Ther. 150, 275–278 (1965)

    Google Scholar 

  • Csaky, T.Z., Rigor, B.M.: A concentrative mechanism for sugars in the chlorioid plexus. Life Sci. 3, 931–936 (1964)

    Google Scholar 

  • Csaky, T.Z., Thale, M.: Effect of ionic environment on the intestinal sugar transport. J. Physiol. (Lond.) 151, 59–65 (1960)

    Google Scholar 

  • Curran, P.F.: Na, Cl, and water transport by rat ileum in vitro. J. gen. Physiol. 43, 1137–1148 (1960)

    Google Scholar 

  • Curran, P.F., Schultz, S.G., Chez, R.A., Fuisz, R.E.: Kinetic relations of the Na-amino acid interaction at the mucosal border in intestine. J. gen. Physiol. 50, 1261–1286 (1967)

    Google Scholar 

  • Danielli, J.F.: Morphological and molecular aspects of active transport. Symp. Soc. exp. Biol. (N.Y.) 8, 502–516 (1954)

    Google Scholar 

  • Davson, H., Reiner, J.M.: Ionic permeability: an enzyme-like factor concerned in the migration of sodium through the cat erythrocyte membrane. J. cell. comp. Physiol. 20, 325–342 (1942)

    Google Scholar 

  • Drabkin, D.L.: Hyperglycemia, glycosuria and dephosphorylation: The role of phosphatases. Proc. Amer. Diab. Assoc. 8, 171–212 (1948)

    Google Scholar 

  • Eavenson, E., Christensen, H.N.: Transport systems for neutral amino acids in the pigeon erythrocyte. J. biol. Chem. 242, 5386–5396 (1967)

    Google Scholar 

  • Eddy, A.A.: A net gain of sodium ions and a net loss of potassium ions accompanying the uptake of glycine by mouse ascites-tumour cells in the presence of sodium cyanide. Biochem. J. 108, 195–206 (1968a)

    Google Scholar 

  • Eddy, A.A.: The effects of varying the cellular and extracellular concentrations of sodium and potassium ions on the uptake of glycine by mouse ascites-tumour cells in the presence and absence of sodium cyanide. Biochem. J. 108, 489–498 (1968b)

    Google Scholar 

  • Eddy, A.A., Backen, K., Watson, G.: The concentration of amino acids by yeast cells depleted of adenosine triphosphate. Biochem. J. 120, 853–858 (1970a)

    Google Scholar 

  • Eddy, A.A., Hogg, M.C.: Further observations on the inhibitory effect of extracellular potassium ions on glycine uptake by mouse ascites-tumour cells. Biochem. J. 114, 807–814 (1969)

    Google Scholar 

  • Eddy, A.A., Indge, K.J., Backen, K., Nowack, J.A.: Interactions between potassium ions and glycine transport in the yeast Saccharomyces carlsbergensis. Biochem. J. 120, 845–852 (1970b)

    Google Scholar 

  • Eddy, A.A., Mulcahy, M.F., Thomson, P.J.: The effects of sodium ions and potassium ions on glycine uptake by mouse ascites-tumour cells in the presence and absence of selected metabolic inhibitors. Biochem. J. 103, 863–876 (1967)

    Google Scholar 

  • Eilam, Y.: Two-carrier models for mediated transport. I. Theoretical analysis of several two-carrier models. Biochim. biophys. Acta (Amst.) 401, 349–363 (1975)

    Google Scholar 

  • Elbrink, J., Bihler, I.: Membrane transport: Its relation to cellular metabolic rates. Science 188, 1177–1184 (1975)

    Google Scholar 

  • Evers, J., Murer, H., Kinne, R.: Phenylalanine uptake in isolated renal brush border vesicles. Biochim. biophys. Acta (Amst.) 426, 598–615 (1976)

    Google Scholar 

  • Flagg, J.L., Wilson, T.H.: Galactoside accumulation by Escherichia coli, driven by a pH gradient. J. Bact. 125, 1235–1236 (1976)

    Google Scholar 

  • Fleckenstein, A.: Über den primären Energiespeicher der Muskelkontraktion. Pflügers Arch. ges. Physiol. 250, 643–666 (1948)

    Google Scholar 

  • Fox, M., Thier, S., Rosenberg, L., Segal, S.: Ionic requirements for amino acid transport in the rat kidney cortex slice. I. Influence of extracellular ions. Biochim. biophys. Acta (Amst.) 79, 167–176 (1964)

    Google Scholar 

  • Gale, E.F.: The assimilation of amino-acids by bacteria. I. The passage of certain amino-acids across the cell wall and their concentration in the internal environment of Streptococcus faecalis. J. gen. Microbiol. 1, 53–76 (1947)

    Google Scholar 

  • Geck, P., Heinz, E.: Coupling in secondary transport. Effect of electrical potentials on the kinetics of ion linked co-transport. Biochim. biophys. Acta (Amst.) 443, 49–53 (1976)

    Google Scholar 

  • Geck, P., Heinz, E., Pfeiffer, B.: Evidence against direct coupling between amino acid transport and ATP hydrolysis. Biochim. biophys. Acta (Amst.) 339, 419–425 (1974)

    Google Scholar 

  • Ginsburg, H., Ram, D.: Zero-trans and equilibrium-exchange efflux and infinite-trans uptake of galactose by human erythrocytes. Biochim. biophys. Acta (Amst.) 382, 369–376 (1975)

    Google Scholar 

  • Ginsburg, H., Stein, W.D.: Zero-trans and infinite-cis uptake of galactose in human erythrocytes. Biochim. biophys. Acta (Amst.) 382, 353–368 (1975)

    Google Scholar 

  • Glynn, I.M., Karlish, S.J.D.: The sodium pump. Ann. Rev. Physiol. 37, 13–55 (1975)

    Google Scholar 

  • Goldner, A., Schultz, S.G., Curran, P.F.: Sodium and sugar fluxes across the mucosal border of rabbit ileum. J. gen. Physiol. 53, 362–383 (1969)

    Google Scholar 

  • Goldschmidt, S.: On the mechanism of absorption from the intestine. Physiol. Rev. 1, 421–453 (1921)

    Google Scholar 

  • Guzman-Barron, E.S.: Mechanisms of carbohydrate metabolism Advanc. Enzymol. 3, 149–189 (1943)

    Google Scholar 

  • Hamburger, H.J.: Weitere Untersuchungen über die Permeabilität der Glomerulusmembran für stereoisomere Zucker mit besonderer Berücksichtigung von Galactose. Biochem. Z. 128, 185–206 (1922)

    Google Scholar 

  • Hamilton, W.A.: Energy coupling in microbiological transfer. Advanc. Microbiol. Physiol. 12, 1–53 (1975)

    Google Scholar 

  • Hansen, O.: The influence of monvalent cations and Ca2+ on — Strophanthin binding to (Na++K+) — activated ATPase. In: Properties and functions of (Na++K+) activated adenosinetriphosphatase. Ann. N.Y. Acad. Sci. 242, 635–645 (1974)

    Google Scholar 

  • Harold, F.M.: Conservation and transformation of energy by bacterial membranes. Bact. Rev. 36, 172–230 (1972)

    Google Scholar 

  • Harold, F.M.: Chemiosmotic interpretation of active transport in bacteria. Ann. N.Y. Acad. Sci. 227,297–311 (1974)

    Google Scholar 

  • Harris, E.J.: Transport and Accumulation in Biological Systems, p. 60. London: Butterworth 1972

    Google Scholar 

  • Heinz, E.: Kinetic studies on the “influx” of glycine-1-C14 into the Ehrlich mouse ascites carcinoma cell. J. biol. Chem. 211, 781–790 (1954)

    Google Scholar 

  • Heinz, E.: Coupling and energy transfer in active amino acid transport. In: Current Topics in Membranes and Transport. Bronner, F., Kleinzeller, A. (eds.), Vol. V, pp. 137–159. New York: Academic Press 1974

    Google Scholar 

  • Heinz, E., Geck, P.: The efficiency of energetic coupling between Na+ flow and amino acid transport in Ehrlich cells. A revised assessment. Biochim. biophys. Acta (Amst.) 339, 426–431 (1974)

    Google Scholar 

  • Heinz, E., Geck, P., Pietrzyk, C.: Driving forces of amino acid transport in animal cells. Ann. N.Y. Acad. Sci. 264, 428–441 (1975)

    Google Scholar 

  • Heinz, E., Geck, P., Wilbrandt, W.: Coupling in secondary active transport. Activation of transport by co-transport and/or counter-transport with the fluxes of other solutes. Biochim. biophys. Acta (Amst.) 255, 442–461 (1972)

    Google Scholar 

  • Heinz, E., Walsh, P.M.: Exchange diffusion, transport and intercellular level of amino acids in Ehrlich carcinoma cells. J. biol. Chem. 233, 1488–1493 (1958)

    Google Scholar 

  • Hirata, H., Altendorf, K., Harold, F.M.: Energy coupling in membrane vesicles of Escherichia coli. I. Accumulation of metabolites in response to an electrical potential. J. biol. Chem. 249, 2939–2945 (1974a)

    Google Scholar 

  • Hirata, H., Kosmakos, F.C., Brodie, A.F.: Active transport of proline in membrane preparations from Mycobacterium phlei J. biol. Chem. 249, 6965–6970 (1974b)

    Google Scholar 

  • Ho, M.K., Guidotti, G.: A membrane protein from human erythrocytes involved in anion exchange. J. biol. Chem. 250, 675–683 (1975)

    Google Scholar 

  • Höber, R.: Über resporption im Dünndarm. Pflügers Arch. ges. Physiol. 74, 246–271 (1899)

    Google Scholar 

  • Höber, R.: Über die Ausscheidung von Zuckern durch die isolierte Froschniere. Pflügers Arch. ges. Physiol. 233, 181–198 (1933)

    Google Scholar 

  • Höber, R., Höber, J.: Experiments on the absorption of organic solutes in the small intestine of rats. J. cell. comp. Physiol. 10, 401–422 (1937)

    Google Scholar 

  • Honegger, P., and Semenza, G.: Multiplicity of carriers for free glucalogues in hamster small intestine. Biochim. biophys. Acta (Amst.) 318, 390–410 (1973)

    Google Scholar 

  • Hopfer, U., Nelson, K., Perrotto, J., Isselbacher, K.J.: Glucose transport in isolated brush border membrane from rat small intestine. J. biol. Chem. 248, 25–32 (1973)

    Google Scholar 

  • Horecker, B.L., Osborn, M.J., McLellan, W.L., Avigad, G., Asensio, C.: The role of bacterial permeases in metabolism. In: Membrane Transport and Metabolism. Kleinzeller, A., Kotyk, A. (eds.), pp. 378–387. Academic Press 1961

    Google Scholar 

  • Inui, Y., Christensen, H.N.: Discrimination of single transport systems.: The Na+-sensitive transport of neutral amino acids in the Ehrlich cell. J. gen. Physiol. 50, 203–224 (1966)

    Google Scholar 

  • Jacquez, J.A.: Models of ion and substrate cotransport and the effect of the membrane potential. Math. Biosci. 13, 71–93 (1972)

    Google Scholar 

  • Jacquez, J.A.: Sodium dependence of maximum flux, JM, and Km of amino acid transport in Ehrlich ascites cells. Biochim. biophys. Acta (Amst.) 318, 411–425 (1973)

    Google Scholar 

  • Jacquez, J.A.: One-way fluxes of α-aminoisobutyric acid in Ehrlich ascites tumor cells: trans effects and effects of sodium and potassium. J. gen. Physiol. 65, 57–83 (1975)

    Google Scholar 

  • Jacquez, J.A., Schafer, J.A.: Na+ and K+ electrochemical potential gradients and the transport of α-aminoisobutyric acid in Ehrlich ascites tumor cells. Biochim. biophys. Acta (Amst.) 193, 368–383 (1969)

    Google Scholar 

  • Johnston, M.M., Diven, W.F.: An integrated rate equation for determining initial velocities. J. theoret. Biol. 25, 331–338 (1969)

    Google Scholar 

  • Johnstone, R.M.: Role of ATP on the initial rate of amino acid uptake in Ehrlich ascites cells. Biochim. biophys. Acta (Amst.) 356, 319–330 (1974)

    Google Scholar 

  • Kaback, H.R.: Uptake of amino acids by “Ghosts” of mutant strains of E. coli. Fed. Proc. 19, p. 130 (1960)

    Google Scholar 

  • Kaback, H.R., Barnes, E.M., Jr.: Mechanisms of active transport in isolated membrane vesicles: II. The mechanism of energy coupling between d-lactic dehydrogenase and β-galactoside transport in membrane preparations from Escherichia coli. J. biol. Chem. 246, 5523–5531 (1971)

    Google Scholar 

  • Kaback, H.R., Reeves, J.P., Short, S.A., Lombardi, F.J.: Mechanisms of active transport in isolated bacterial membrane vesicles. XVIII. The mechanism of action of carbonylcyanide m-chlorophenylhydrazone. Arch. Biochem. Biophys. 160, 215–222 (1974)

    Google Scholar 

  • Kaback, H.R., Stadtman, E.R.: Proline uptake by an isolated cytoplasmic membrane preparation of Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 55, 920–927 (1966)

    Google Scholar 

  • Kalckar, H.M.: Phosphorylation in kidney tissue. Enzymologia 2, 47–52 (1937)

    Google Scholar 

  • Kalckar, H.M.: The nature of energetic coupling in biological synthesis. Chem. Rev. 28, 71–178 (1941)

    Google Scholar 

  • Karlin, A.: The acetylcholine receptor: progress report. Life Sci. 14, 1385–1415 (1974)

    Google Scholar 

  • Kasahara, M., Hinkel, P.C.: Reconstruction of D-glucose transport catalyzed by a protein fraction from human erythrocytes in sonicated liposomes. Proc. nat. Acad. Sci. (Wash.) 73, 396–400 (1976)

    Google Scholar 

  • Kashket, E.R., Wilson, T.H.: Proton-coupled accumulation of galactoside in Streptococcus lactis 7962. Proc. nat. Acad. Sci. (Wash.) 70, 2866–2869 (1973)

    Google Scholar 

  • Kepes, A.: Etudes cinetiques sur la galactoside-permease d'Escherichia coli. Biochim. biophys. Acta (Amst.) 40, 7–84 (1960)

    Google Scholar 

  • Kepes, A.: Galactoside peremease of Escherichia Coli. In: Current Topics in Membrane and Transport. Bronner, F. and Kleinzeller, A. (eds.), Vol. 1, p. 101–134. New York: Academic Press 1970

    Google Scholar 

  • Kimmich, G.A.: Active Sugar accumulation by isolated intestinal epithelial cells. A new model for sodium-dependent metabolite transport. Biochemistry 19, 3669–3677 (1970)

    Google Scholar 

  • Kimmich, G.A.: Coupling between Na+ and sugar transport in small intestine. Biochim. biophys. Acta (Amst.) 300, 31–78 (1973)

    Google Scholar 

  • Kinne, R., Murer, H., Kinne-Saffran, E., Thees, M., Sachs, G.: Sugar transport by renal plasma membrane vesicles. Characterization of the systems in the brush border microvilli and basal-lateral plasma membranes. J. Membrane Biol. 21, 375–395 (1975)

    Google Scholar 

  • Kleinzeller, A.: Active sugar transport in renal cortex cells: The electrolyte requirement. Biochim. biophys. Acta (Amst.) 211, 277–292 (1970)

    Google Scholar 

  • Kleinzeller, A., Kotyk, A.: Eds. Membrane Transport and Metabolism. New York: Academic Press 1961a

    Google Scholar 

  • Kleinzeller, A., Kotyk, A.: Cations and transport of galactose in kidney-cortex slices. Biochim. biophys. Acta (Amst.) 54, 367–369 (1961b)

    Google Scholar 

  • Kletzien, R.F., Perdue, J.F.: Sugar transport in chick embryo fibroblasts: I. A functional change in the plasma membrane associated with the rate of cell growth. J. biol. Chem. 249, 3366–3374 (1974a)

    Google Scholar 

  • Kletzien, R.F., Perdue, J.F.: Sugar transport in chick embryo fibroblasts. II. Alterations in transport following transformation by a temperature sensitive mutant of the rous sarcoma virus. J. biol. Chem. 249, 3375–3382 (1974b)

    Google Scholar 

  • Koch, A.L.: The role of permease in transport. Biochim. biophys. Acta (Amst.) 79, 177–200 (1964)

    Google Scholar 

  • Koefoed-Johnsen, V., Ussing, H.H.: The nature of the frog skin potential. Acta physiol. scand. 42, 298–308 (1958)

    Google Scholar 

  • Komor, E., Tanner, W.: The hexose-proton symport system of Chlorella vulgaris: specificity, stoichio-metry and energetics of sugar-induced proton uptake. Europ. J. Biochem. 44, 219–223 (1974a)

    Google Scholar 

  • Komor, E., Tanner, W.: The hexose-proton cotransport system of Chlorella: pH dependent change in Km values and translocation constants of the uptake system. J. gen. Physiol. 64, 568–581 (1974b)

    Google Scholar 

  • Koopman, W., Schultz, S.G.: The effect of sugars and amino acids on mucosal Na+ and K+ concentrations in rabbit ileum. Biochim. biophys. Acta (Amst.) 173, 338–340 (1969)

    Google Scholar 

  • Krane, S.M., Crane, R.K.: The accumulation of D-galactose against a concentration gradient by slices of rabbit kidney cortex. J. biol. Chem. 234, 211–216 (1959)

    Google Scholar 

  • Krebs, H. A.: The intermediary stages in the biological oxidation of carbohydrate. Advanc. Enzymol. 3, 191–252 (1943)

    Google Scholar 

  • Kromphardt, H., Grobecker, H., Ring, K., Heinz, E.: Über den Einfluß von Alkali-Ionen auf den Glycintransport in Ehrlichascites-Tumorzellen. Biochim. biophys. Acta (Amst.) 74, 549–551 (1963)

    Google Scholar 

  • Lee, Chin O, Armstrong, W. McD.: Activities of sodium and potassium ions in epithelial cells of small intestine. Science 175, 1261–1264 (1972)

    Google Scholar 

  • Lee, H-J., Wilson, I.B.: Enzymic parameters: measurement of V and Km. Biochim. biophys. Acta (Amst.) 242, 519–522 (1971)

    Google Scholar 

  • Lee, J.W., Beygu-Farber, S., Vidaver, G.A.: Glycine transport by membrane vesicles from pigeon red cells. Biochim. biophys. Acta (Amst.) 298, 446–459 (1973)

    Google Scholar 

  • Le Fevre, P.G.: A model for erythrocyte sugar transport based on substrate-conditioned “introversion” of binding sites. J. Membrane Biol. 11, 1–19 (1973)

    Google Scholar 

  • Le Fevre, P.G.: The present state of the carrier hypothesis. In: Current Topics in Membranes and Transport. Bonner, F. and Kleinzeller, A. (eds.), Vol. XII, pp. 109–215. New York: Academic Press 1975

    Google Scholar 

  • Le Fevre, P.G.: A comparison of recent suggestions for the functional organization of red-cell sugar-transport sites based on kinetic observations. Ann. N.Y. Acad. Sci. 264, 398–413 (1975b)

    Google Scholar 

  • Le Fevre, P.G., Davies, R.I.: Active transport into the human erythrocyte: evidence from comparative kinetics and competition among monosaccharides. J. gen. Physiol. 34, 515–524 (1951)

    Google Scholar 

  • Lipmann, F.: Metabolic generation and utilization of phosphate bond energy. Advanc. Enzymol. 1, 99–162 (1941)

    Google Scholar 

  • Lombardi, F.J., Reeves, J.P., Kaback, H.R.: Mechanisms of active transport in isolated bacterial membrane vesicles. XIII. Valinomycin-induced rubidium transport. J. biol. Chem. 248, 3551–3565 (1973)

    Google Scholar 

  • Lundsgaard, E.: Effect of phlorizin in the isolated kidney and isolated liver. Skand. Archa Physiol. 72, 265 (1935)

    Google Scholar 

  • Lundegardh, H.: Investigations as to the absorption and accumulation of inorganic ions. Ann. Agric. Coll. Sweden 8, 234–395 (1940)

    Google Scholar 

  • Lyon, I., Crane, R.K.: Studies on transmural potentials in vitro in relation to intestinal absorption. I. Apparent michaelis constants for Na+-dependent sugar transport. Biochim. biophys. Acta. (Amst.) 112, 278–291 (1966)

    Google Scholar 

  • Malathi, P., Crane, R.K.: Spatial relationship between intestinal disaccharidases and the active transport system for sugars. Biochim. biophys. Acta. (Amst.) 163, 275–277 (1968)

    Google Scholar 

  • McDougal, D.B., Jr., Little, K.D., Crane, R.K.: Studies on the mechanism of intestinal absorption of sugars. IV. Localization of galactose concentrations within the intestinal wall during active transport, in vitro. Biochim. biophys. Acta (Amst.) 45, 483–489 (1960)

    Google Scholar 

  • Mering, I., von: Über Diabetes mellitus. I. Z. klin. Med. 13, 405–423 (1888)

    Google Scholar 

  • Mering, I., von: Über Diabetes Meillitus. II. Z. klin. Med. 16, 431–446 (1889)

    Google Scholar 

  • Michaelson, D.M., Raftery, M.A.: Purified acetylcholine receptor: its reconstitution to a chemically excitable membrane. Proc. nat. Acad. Sci. (Wash.) 71, 4768–4772 (1974)

    Google Scholar 

  • Michaelson, D., Vandlen, R., Bode, J., Moody, T., Schmidt, J., Raftery, M.A.: Some molecular properties of an isolated acetylcholine receptor ion-translocation protein. Arch. Biochem. Biophys. 165, 796–804 (1974)

    Google Scholar 

  • Mitchell, P.: Transport of phosphate through an osmotic barrier. Symp. Soc. exp. Biol. (N.Y.) 8, 254–261 (1954)

    Google Scholar 

  • Mitchell, P.: A general theory of membrane transport from studies of bacteria. Nature (Lond.) 180, 134–136 (1957)

    Google Scholar 

  • Mitchell, P.: Structure and function in microorganisms. Biochem. Soc. Symp. 16, 73–94 (1959)

    Google Scholar 

  • Mitchell, P.: Biological transport phenomena and the spatially anisotropic characteristics of enzyme systems causing a vector component of metabolism. In: Membrane Transport and Metabolism. Kleinzeller, A. (ed.), pp. 22–34. New York: Academic Press 1961a

    Google Scholar 

  • Mitchell, P.: Approaches to the analysis of specific membrane transport. In: Biological Structure and Function. Goodwin, T.W. and Lindberg, O. (eds.), Vol. II, pp. 581–603. New York: Academic Press 1961b

    Google Scholar 

  • Mitchell, P.: Conduction of protons through the membranes of mitochondria and bacteria by uncouplers of oxidative phosphorylation. Biochem. J. 81, 24P (1961c)

    Google Scholar 

  • Mitchell, P.: Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature (Lond.) 191, 144–148 (1961d)

    Google Scholar 

  • Mitchell, P.: Molecular, group and electron translocation through natural membranes. Biochem. Soc. Symp. 22, 142–168 (1963)

    Google Scholar 

  • Mitchell, P.: Translocations through natural membranes. Advanc. Enzymol. 29, 33–87 (1967)

    Google Scholar 

  • Mitchell, P.: Reversible coupling between transport and chemical reactions. In: Membranes and Ion Transport. Bittar, E.E. (ed.), Vol. I, pp. 192–256. London: Wiley-Interscience 1970

    Google Scholar 

  • Mitchell, P.: Performance and conservation of osmotic work by proton-coupled solute porter systems. Bioenergetics 3, 63–91 (1973)

    Google Scholar 

  • Mitchell, P., Moyle, J.: Group-translocation: a consequence of enzyme-catalyzed group-transfer. Nature (Lond.) 182, 372–373 (1958)

    Google Scholar 

  • Morville, M., Reid, M., Eddy, A.A.: Amino acid absorption by mouse ascites-tumour cells depleted of both endogenous amino acids and adenosine triphosphate. Biochem. J. 134, 11–26 (1973)

    Google Scholar 

  • Murer, H., Hopfer, U.: Demonstration of electrogenic Na+-dependent D-glucose transport in intestinal brush border membranes. Proc. nat. Acad. Sci. (Wash.) 71, 484–488 (1974)

    Google Scholar 

  • Murer, H., Hopfer, U., Kinne-Saffran, E., Kinne, R.: Glucose transport in isolated brush border and lateral-basal plasma-membrane vesicles from intestinal epithelial cells. Biochim. biophys. Acta (Amst.) 345, 170–179 (1974)

    Google Scholar 

  • Murer, H., Hopfer, U., Kinne, R.: Sodium/proton antiport in brush-border membrane vesicles isolated from rat small intestine and kidney. Biochem. J. 154, 597–604 (1976)

    Google Scholar 

  • Naftalin, R.J.: A model for sugar transport across red cell membranes without carriers. Biochim. biophys. Acta (Amst.) 211, 65–78 (1970)

    Google Scholar 

  • Naftalin, R.J., Holman, G.D.: The effects of removal of sodium ions from the mucosal solution on sugar absorption by rabbit ileum. Biochim. biophys. Acta (Amst.) 419, 385–390 (1976)

    Google Scholar 

  • Nagano, J.: Zur Kenntniss der Resorption Einfacher, im besonderen stereoisomerer Zucker im Dimndarm. Pflügers Arch. ges. Physiol. 90, 389–404 (1902)

    Google Scholar 

  • Nakazawa, F.: Influence of phlorizin on intestinal absorption. J. exp. Med. Tohoku 3, 288–294 (1922)

    Google Scholar 

  • Nathans, D., Tapley, D.F., Ross, J.E.: Intestinal transport of amino acids studied in vitro with L-[131I] monoiodotyrosine Biochim. biophys. Acta (Amst.) 41, 271–282 (1960)

    Google Scholar 

  • Niven, D.F., Jeacocke, R.E., Hamilton, W.A.: The membrane potential as the driving force for the accumulation of lysine by Staphylococcus aureus. FEBS Letters 29, 248–252 (1973)

    Google Scholar 

  • Nordlie, R.C., Soodsma, J.F.: Phosphotransferase activities of kidney glucose 6-phosphatase. J. biol. Chem. 241, 1719–1724(1966)

    Google Scholar 

  • Orlowski, M., Meister, A.: The γ-glutamyl Cycle: A possible transport system for amino acids. Proc. nat. Acad. Sci. (Wash.) 67, 1248–1255 (1970)

    Google Scholar 

  • Osterhout, W.J.F.: How do electrolytes enter the cell? Proc. nat. Acad. Sci. (Wash.) 21, 125–132 (1935)

    Google Scholar 

  • Park, C.R., Post, R.L., Kalman, C.F., Wright, J.H. Jr., Johnson, L.H., Morgan, H.E.: The transport of glucose and other sugars across cell membranes and the effect of insulin. Ciba Fdn. Coll. Endocrin. 9, 240–265 (1956)

    Google Scholar 

  • Patel, L., Schuldiner, S., Kaback, H.R.: Reversible effects of chaotropic agents on the proton permeability of Escherichia coli membrane vesicles. Proc. nat. Acad. Sci. (Wash.) 72, 3387–3391 (1975)

    Google Scholar 

  • Patlak, C.S.: Contributions of the theory of active transport: II. the gate type non-carrier mechanism and generalizations concerning tracer flow, efficiency and measurement of energy expenditure. Bull. Math. Biophysics 19, 209–235 (1957)

    Google Scholar 

  • Pavlasova, E., Harold, F.M.: Energy coupling in the transport of β-galactosides by Escherichia Coli: effect of proton conductors. J. Bact. 98, 198–204 (1969)

    Google Scholar 

  • Pietrzyk, A., Heinz, E.: The sequestration of Na+, K+ and Cl in the cellular nucleus and its energetic consequences for the gradient hypotheis of amino acid transport in Ehrlich cells. Biochim. biophys. Acta (Amst.) 352, 397–411 (1974)

    Google Scholar 

  • Post, R.L., Sen, A.K., Rosenthal, A.S.: A phosphorylated intermediate in adenosine triphosphate-dependent sodium and potassium transport across kidney membranes. J. biol. Chem. 240, 1437–1445 (1965)

    Google Scholar 

  • Racker, E., Fisher, L.W.: Reconstitution of an ATP-dependent sodium pump with an ATPase from electric eel and pure phospholipids. Biochem. biophys. Res. Commun. 67, 1144–1150 (1975)

    Google Scholar 

  • Ramos, S., Schuldiner, S., Kaback, H.R.: The electrochemical gradient of protons and its relationship to active transport in Escherichia coli membrane vesicles. Proc. nat. Acad. Sci. (Wash.) (1976) (in press)

    Google Scholar 

  • Rang, H.P.: Acetylcholine receptors. Quart. Rev. Biophys. 7, 283–399 (1975)

    Google Scholar 

  • Reeves, J.P.: Transient pH changes during D-lactate oxidation by membrane vesicles. Biochem. biophys. Res. Commun. 45, 931–936 (1971)

    Google Scholar 

  • Reeves, J.P., Hong, Jen-Shiang, Kaback, H.R.: Reconstitution of D-lactate-dependent transport in membrane vesicles from a D-lactate dehydrogenase mutant of Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 70, 1917–1921 (1973)

    Google Scholar 

  • Reid, E.W.: IV. On intestinal absorption, especially on the absorption of serum, peptone and glucose. Phil. Trans. B, 192–211 (1900)

    Google Scholar 

  • Reid, E.W.: Intestinal absorption of solutions. J. Physiol. (Lond.) 28, 241–256 (1902)

    Google Scholar 

  • Rickenberg, H.W., Cohen, G.N., Buttin, G., Monod, J.: Galactoside permease in Escherichia coli. Ann. Inst. Pasteur 91, 829–857 (1956)

    Google Scholar 

  • Riggs, T.R., Walker, L.M., Christensen, H.N.: Potassium migration and amino acid transport. J. biol. Chem. 233, 1479–1484(1958)

    Google Scholar 

  • Riklis, E., Quastel, J.H.: Effects of cations of sugar absorption by isolated surviving guinea pig intestine. Canad. J. Biochem. 36, 347–362 (1958)

    Google Scholar 

  • Rose, R.C., Schultz, S.G.: Studies on the electrical potential profile across rabbit ileum. J. gen. Physiol. 57, 639–663 (1971)

    Google Scholar 

  • Roseman, S.: In: The Molecular Basis of Biological Transport. Woessner, J.F., and Huijing, F. (eds.), pp. 181–218. New York: Academic Press 1972

    Google Scholar 

  • Rosenberg, I.H., Coleman, A.L., Rosenberg, L.E.: The role of sodium ion in the transport of amino acids by the intestine. Biochim. biophys. Acta (Amst.) 102, 161–171 (1965)

    Google Scholar 

  • Rosenberg, L.E., Blair, A., Segal, S.: Transport of amino acids by slices of rat-kidney cortex. Biochim. biophys. Acta (Amst.) 54, 479–488 (1961)

    Google Scholar 

  • Rosenberg, Th.: On accumulation and active transport in biological systems. Acta chem. scand. 2, 14–33 (1948)

    Google Scholar 

  • Rosenberg, Th.: The concept and definition of active transport. Soc. exp. Biol. Symp. 8, 27–41 (1954)

    Google Scholar 

  • Rosenberg, Th., Wilbrandt, W.: Enzymatic processes in cell membrane penetration. Int. Rev. Cytol. 1, 65–92 (1952)

    Google Scholar 

  • Rosenberg, Th., Wilbrandt, W.: Uphill transport induced by counterflow. J. gen. Physiol. 41, 289–296 (1957)

    Google Scholar 

  • Rothstein, A., Cabantchik, Z.I., Knauf, P.: Mechanism of anion transport in red cells: role of membrane proteins. Fed. Proc. 35, 3–10 (1976)

    Google Scholar 

  • Rudnick, G., Kaback, H.R., Weil, R.: Photoinactivation of the β-galactoside transport system in Escherichia coli membrane vesicles with an impermeant Azidophenyl galactoside. J. biol. Chem. 250, 6847–6851 (1975)

    Google Scholar 

  • Sacktor, B.: Trehalase and the transport of glucose in the mammalian kidney and intestine. Proc. nat. Acad. Sci. (Wash.) 60, 1007–1014 (1968)

    Google Scholar 

  • Schafer, J.A.: An examination of the energetic adequacy of the ion gradient hypothesis for nonelectrolyte transport. In: Na-linked Transport of Organic Solutes. Heinz, E. (ed.), pp. 68–83. Berlin-Heidelberg-New York: Springer 1971

    Google Scholar 

  • Schafer, J.A., Heinz, E.: The effect of reversal of Na+ and K+ electrochemical potential gradients on the active transport of amino acids in Ehrlich ascites tumor cells. Biochim. biophys. Acta. (Amst.) 249, 15–33 (1971)

    Google Scholar 

  • Schafer, J.A., Jacquez, J.A.: Change in Na+ uptake during amino acid transport. Biochim. biophys. Acta (Amst.) 135, 1081–1083 (1967)

    Google Scholar 

  • Schuldiner, S., Kaback, H.R.: Membrane potential and active transport in membrane vesicles from Escherichia coli. Biochem. 14, 5451–5460 (1975)

    Google Scholar 

  • Schuldiner, S., Kung, H.-F., Kaback, H.R., Weil, R.: Differentiation between binding and transport of dansylgalactosides in Escherichia coli. J. biol. Chem. 250, 3679–3682 (1975a)

    Google Scholar 

  • Schuldiner, S., Spencer, R.D., Weber, G., Weil, R., Kaback, H.R.: Lifetime and rotational relaxation time of dansylgalactoside bound to the lac carrier protein. J. biol. Chem. 250, 8893–8896 (1975b)

    Google Scholar 

  • Schuldiner, S., Weiss, R., Kaback, H.R.: Energy-dependent binding of dansylgalactoside to the lac carrier protein: direct binding measurements. Proc. nat. Acad. Sci. (Wash.) 73, 109–112 (1976)

    Google Scholar 

  • Schulman, J.D., Goodman, S.I., Mace, J.W., Patrick, A.D., Tietze, F., Butler, E.J.: Glutathionuria: inborn error of metabolism due to tissue deficiency of gamma-glutamyl transpeptidase. Biochem. biophys. Res. Commun. 65, 68–74 (1975)

    Google Scholar 

  • Schultz, S.G., Curran, P.F.: Coupled transport of sodium and organic solutes. Physiol. Rev. 50, 637–717 (1970)

    Google Scholar 

  • Schultz, S.G., Curran, P.F., Chez, R.A., Fuisz, R.E.: Alanine and sodium fluxes across mucosal border of rabbit ileum. J. gen. Physiol. 50, 1241–1260 (1967)

    Google Scholar 

  • Schultz, S.G., Zalusky, R.: Ion transport in isolated rabbit ileum. I. Short-circuit current and Na fluxes. J. gen. Physiol. 47, 567–584 (1964a)

    Google Scholar 

  • Schultz, S.G., Zalusky, R.: Ion transport in isolated rabbit ileum. II. The interaction between active sodium and active sugar transport. J. gen. Physiol. 47, 1043–1059 (1964b)

    Google Scholar 

  • Seaston, A., Carr, G., Eddy, A.A.: The concentration of glycine by preparations of the yeast Saccharomyces carlsbergensis depleted of adenosine triphosphate.: Effects of proton gradients and uncoupling agents. Biochem. J. 154, 669–676 (1976)

    Google Scholar 

  • Segal, S., Rosenhagen, M.: The effect of extracellular sodium concentration on γ-methyl-D-glucose transport by rat kidney cortex slices. Biochim. biophys. Acta (Amst.) 332, 278–285 (1974)

    Google Scholar 

  • Shaw, T.I. (1954) Ph.D. Dissertation, Cambridge Press. Quoted by Glynn, I.M.J. Physiol. (Lond.) 134 (1956) 278

    Google Scholar 

  • Short, S.A., Kaback, H.R., Kohn, L.D.: D-lactate dehydrogenase binding in Escherichia coli dld-Membrane vesicles reconstituted for active transport. Proc. nat. Acad. Sci. (Wash.) 71, 1461–1465 (1974)

    Google Scholar 

  • Short, S.A., Kaback, H.R., Kohn, L.D.: Localization of D-lactate dehydrogenase in native and reconstituted Escherichia coli membrane vesicles. J. biol. Chem. 250, 4291–4296 (1975)

    Google Scholar 

  • Sigrist-Nelson, K., Murer, H., Hopfer, U.: Active alanine transport in isolated brush border membranes. J. biol. Chem. 250, 5674–5680 (1975)

    Google Scholar 

  • Simoni, R.D., Postma, P.W.: The energetics of bacterial active transport. Ann. Rev. Biochem. 44, 523–554 (1975)

    Google Scholar 

  • Singer, S.J.: The molecular organization of membranes. Ann. Rev. Biochem. 43, 805–833 (1974)

    Google Scholar 

  • Skou, Jens Chr.: The influence of some cations on an adenosine triphopshatase from peripheral nerves. Biochim. biophys. Acta (Amst.) 23, 394–401 (1957)

    Google Scholar 

  • Sols, A., Crane, R.K.: Substrate specificity of brain hexokinase. J. biol. Chem. 210, 581–595 (1954)

    Google Scholar 

  • Stein, W.D.: The movement of molecules across cell membranes. In: Theoretical and Experimental Biology, Vol. VI. New York: Academic Press 1967

    Google Scholar 

  • Stock, J., Roseman, S.: A sodium-dependent sugar co-transport system in bacteria. Biochem. biophys. Res. Commun 44, 132–138 (1971)

    Google Scholar 

  • Thier, S.O., Blair, A., Fox, M., Segal, S.: The effect of extracellular sodium concentration of the kinetics of α-aminoisobutyric acid transport in the rat kidney cortex slice. Biochim. biophys. Acta (Amst.) 135, 300–305 (1967)

    Google Scholar 

  • Tyson, C.H., Vande Zande, H., Green, D.E.: Phospholipids as ionophores. J. biol. Chem. 251, 1326–1332(1976)

    Google Scholar 

  • Ullrich, K.J.: Renal tubular mechanisms of organic solute transport. Kidney Intern. 9, 134–148 (1976)

    Google Scholar 

  • Ussing, H.H.: Interpretation of the exchange of radiosodium in isolated muscle. Nature (Lond.) 160, 262–263 (1947)

    Google Scholar 

  • Ussing, H.H.: The use of tracers in the study of active ion transport across animal membranes. Cold Spr. Harb. Symp. quant. Biol. 13, 93–200 (1948)

    Google Scholar 

  • Ussing, H.H.: The distinction by means of tracers between active transport and diffusion: The transfer of iodide across the isolated frog skin. Acta physiol. scand. 19, 43–56 (1949)

    Google Scholar 

  • Van Handel, E.: Do trehalose and trehalase function in renal glucose transport? Science 163, 1075–1076 (1969)

    Google Scholar 

  • Van Slyke, D.D., Meyer, G.M.: The fate of protein digestion products in the body. III. The absorption of amino acids from the blood by the tissues. J. biol. Chem. 16, 197–212 (1913)

    Google Scholar 

  • Verzar, F.: Probleme und Ergebnisse auf dem Gebiete der Darmresorption. Ergebn. Physiol. 32, 391–471 (1931)

    Google Scholar 

  • Vidaver, G.A.: Transport of glycine by pigeon red cells. Biochem. 3, 662–667 (1964a)

    Google Scholar 

  • Vidaver, G.A.: Glycine transport by hemolyzed and restored pigeon red cells. Biochemistry 3, 795–799 (1964b)

    Google Scholar 

  • Vidaver, G.A.: Mucate inhibition of glycine entry into pigeon red cells. Biochemistry 3, 799–803 (1964c)

    Google Scholar 

  • Vidaver, G.A.: Some tests of the hypothesis that the sodium-ion gradient furnishes the energy for glycine-active transport by pigeon red cells. Biochemistry 3, 803–808 (1964d)

    Google Scholar 

  • Vidaver, G.A., Shepherd, S.L.: Transport of glycine by hemolysed and restored pigeon red blood cells. J. biol. Chem. 243, 6140–6150 (1968)

    Google Scholar 

  • Walker, A.M., Hudson, C.L.: The reabsorption of glucose from the renal tubule in amphibia and the action of phlorhizin upon it. Amer. J. Physiol. 118, 130–143 (1937)

    Google Scholar 

  • Wearn, J.T., Richards, A.N.: Observations on the composition of glomerular urine, with particular reference to the problem of reabsorption in the renal tubules. Amer. J. Physiol. 71, 209–227 (1924)

    Google Scholar 

  • West, I.C.: Lactose transport coupled to proton movements in Escherichia coli. Biochem. biophys. Res. Commun 41, 655–661 (1970)

    Google Scholar 

  • West, I.C., Mitchell, P.: Stoicheiometry of lactose-proton symport across the plasma membrane of Escherichia coli. Biochem. J. 132, 587–592 (1973)

    Google Scholar 

  • Wheeler, K.P., Christensen, H.N.: Role of Na+ in the transport of Amino acids in rabbit red cells. 1 biol. Chem. 242, 1450–1457 (1967)

    Google Scholar 

  • Wheeler, K.P., Inui, Y., Hollenberg, P.F., Eavenson, E., Christensen, H.N.: Relation of amino and acid transport to sodium-ion concentration. Biochim. biophys. Acta (Amst.) 109, 620–622 (1965)

    Google Scholar 

  • White, H.L., Schmitt, F.O.: Site of reabsorption in the kidney tubule of necturus. Amer. J. Physiol. 76, 483–495 (1926)

    Google Scholar 

  • Widdas, W.F.: Inability of diffusion to account for placental glucose transfer in the sheep and consideration of the kinetics of a possible carrier transfer. J. Physiol. (Lond.) 118, 23–39 (1952)

    Google Scholar 

  • Wilbrandt, W.: Permeabilitätsprobleme. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 212, 9–31 (1950)

    Google Scholar 

  • Wilbrandt, W.: Secretion and transport of non-electrolytes. Soc. exp. Biol. Symp. 8, 136–164 (1954)

    Google Scholar 

  • Wilbrandt, W., Laszt, L.: Untersuchung über die Ursachen der selectiven glukoseresorption aus dem Darm. Biochem. 259, 398–417 (1933)

    Google Scholar 

  • Wilbrandt, W., Rosenberg, Th.: The concept of carrier transport corollaries in pharmacology. Pharmacol. Rev. 13, 109–183 (1961)

    Google Scholar 

  • Winkler, H.H., Wilson, T.H.: The role of energy coupling in the transport of β-Galactosides by Escherichia coli. J. biol. Chem. 241, 2200–2211 (1966)

    Google Scholar 

  • Wyssbrod, H.R., Scott, W.N., Brodsky, W.A., Schwartz, I.L.: Carrier-mediated transport processes. In: Handbook of Neurochemistry. Lajtha, A. (ed.), Vol. 5, Part B, pp. 683–819. New York: Plenum 1971

    Google Scholar 

  • Young, J.D., Ellory, J.C., Wright, P.C.: Evidence against the participation of the γ-glutamyltransferase-γ-glutamylcyclotransferase pathway in amino acid transport by rabbit erythrocytes. Biochem. J. 152, 713–715 (1975)

    Google Scholar 

Download references

Authors

Additional information

Dedicated to Professor Carl F. Cori on the occasion of his 80th birthday.

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Springer Verlag

About this chapter

Cite this chapter

Crane, R.K. (1977). The gradient hypothesis and other models of carrier-mediated active transport. In: Reviews of Physiology, Biochemistry and Pharmacology, Volume 78. Reviews of Physiology, Biochemistry and Pharmacology, vol 78. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0027722

Download citation

  • DOI: https://doi.org/10.1007/BFb0027722

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-07975-0

  • Online ISBN: 978-3-540-37993-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics