Skip to main content

Peritubular capillary, interstitium, and lymph of the renal cortex

  • Chapter
  • First Online:
Book cover Reviews of Physiology, Biochemistry and Pharmacology, Volume 99

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 99))

Recipient of the Alexander v. Humbolt Senior Award, 1980

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albertine KH, O'Morchoe CCC (1979) Distribution and density of the canine renal cortical lymphatic system. Kidney Int 16:470–480

    PubMed  Google Scholar 

  • Albertine KH, O'Morchoe CCC (1980) Renal lymphatic ultrastructure and translymphatic transport. Microvasc Res 19:338–351

    Article  PubMed  Google Scholar 

  • Albertine KH, O'Morchoe CCC (1981) An ultrastructural study of the transport pathways across arcuate, interlobar, hilar and capsular lymphatics in the dog kidney. Microvasc Res 21:351–361

    Article  PubMed  Google Scholar 

  • Atkins JL, O'Morchoe CCC, Pinter GG (1972) Simultaneous studies of hilar and capsular renal lymph. Life Sci 11(I):1007–1010

    Article  Google Scholar 

  • Atkins JL, O'Morchoe CCC, Ulfendahl HR, Wolgast M, Agerup B, Pinter GG (1973) Total lymph flow in dogs and rats. ASN 6th Annual Meeting (Abstracts), p 5

    Google Scholar 

  • Bailie MD, Rector FC Jr, Seldin DW (1971) Angiotensin II in arterial and renal venous plasma and renal lymph in the dog. J Clin Invest 50:119–126

    PubMed  Google Scholar 

  • Bell DR, Pinter GG, Wilson PD (1978) Albumin permeability of the peritubular capillaries in rat renal cortex. J Physiol (Lond) 279:621–640

    PubMed  Google Scholar 

  • Bode F, Ottosen PD, Madsen KM, Maunsbach AB (1980) Does transtubular transport of intact protein occur in the kidney? In: Maunsbach AB, Olsen TS, Christensen ET (eds) Functional ultrastructure of the kidney. Academic Press, New York, pp 385–395

    Google Scholar 

  • Bohle A, Glomb D, Grund KE, Mackensen S (1977a) Correlations between relative interstitial volume of the renal cortex and serum creatinine concentration in minimal changes with nephrotic syndrome and in focal sclerosing glomerulonephritis. Virchows Arch [Pathol Anat] 376:221–232

    Article  Google Scholar 

  • Bohle A, Grund KE, Mackensen S, Tolon M (1977b) Correlations between renal interstitium and level of serum creatinine. Virchows Arch [Pathol Anat] 373:15–22

    Article  Google Scholar 

  • Bohle A, Christ H, Grund KE, Mackensen S (1979) The role of the interstitium of the renal cortex in renal disease. Contrib Nephrol 16:109–114

    PubMed  Google Scholar 

  • Bohle A, Gise HV, Mackensen-Haen S, Stark-Jakob B (1981) The obliteration of the postglomerular capillaries and its influence upon the function of both glomeruli and tubuli. Klin Wochenschr 59:1043–1051

    Article  PubMed  Google Scholar 

  • Brenner BM, Troy JL, Daugharty TM (1971) The dynamics of glomerular ultrafiltration in the rat. J Clin Invest 50:1776–1780

    PubMed  Google Scholar 

  • Brenner BM, Troy JL, Daugherty TM, Deen WM, Robertson CR (1972) Dynamics of glomerular ultrafiltration in the rat. II. Plasma-flow dependence of GFR. Am J Physiol 223:1184–1190

    PubMed  Google Scholar 

  • Casley-Smith JR (1979) Fine structural study of variations in protein concentration in lacteals during compression and relaxation. Lymphology 12:59–65

    PubMed  Google Scholar 

  • Casley-Smith JR, Sims MA (1976) Protein concentrations in regions with fenestrated and continuous blood capillaries and in initial and collecting lymphatics. Microvasc Res 12:245–257

    Article  PubMed  Google Scholar 

  • Cook VL, Reese AH, Wilson PD, Pinter GG (1982) Access of reabsorbed glucose to renal lymph. Experientia 38:108–109

    Article  PubMed  Google Scholar 

  • Deen WM, Ueki JF, Brenner BM (1976) Permeability of renal peritubular capillaries to neutral dextrans and endogenous albumin. Am J Physiol 231:283–291

    PubMed  Google Scholar 

  • Gärtner K, Vogel G, Ulbrich M (1968) Untersuchungen zur Penetration von Makromolekülen (Polyvinylpirrolidon) durch glomeruläre und postglomeruläre Kapillaren in der Harn-und Nierenlymphe und zur Größe der extravasalen Umwälzung von I-131 Albumin im Interstitium der Niere. Pfluegers Arch 298:305–321

    Article  Google Scholar 

  • Horkey K, Rojo-Ortega JM, Rodriguez J, Boucher R, Genest J (1971) Renin, renin substrate, and angiotensin I-converting enzyme in lymph of rats. Am J Physiol 220:307–331

    PubMed  Google Scholar 

  • Källskog O, Lindbom LO, Ulfendahl HR, Wolgast M (1975) Kinetics of the glomerular ultrafiltration in the rat kidney. An experimental study. Acta Physiol Scand 95:293–300

    PubMed  Google Scholar 

  • Katchalsky A, Curran PG (1965) Nonequilibrium thermodynamics in biophysics. Harvard Univ Press, Cambridge, Mass

    Google Scholar 

  • Knepper MA, Danielson RA, Saidel GM, Post RS (1977) Quantitative analysis of renal medullary anatomy in rats and rabbits. Kidney Int 12:313–323

    PubMed  Google Scholar 

  • Kriz W (1981) Structural organization of the renal medulla: comparative and functional aspects. Editorial review. Am J Physiol 241:R3–R16

    PubMed  Google Scholar 

  • Kriz W, Dieterich HJ (1970) Das Lymphgefäßsystem der Niere bei einigen Säugetieren. Licht-und elektronenmikroskopische Untersuchungen. Anat Embryol (Berl) 131:111–147

    Article  Google Scholar 

  • Kriz W, Napiwotzky P (1979) Structural and functional aspects of the renal interstitium. Contrib Nephrol 16:104–108

    PubMed  Google Scholar 

  • Langer KH (1975) Nitereninterstitium — Feinstrukturen und kapillare Permeabilität. I. Feinstrukturen der zellulären und extrazellulären Komponenten des peritubulären Niereninterstitiums. II. Elektronenmikroskopische Permeabilitätsstudien an peritubulären Kapillaren der Niere. III. Untersuchungen über die Verteilung von Tracer-Proteinen im peritubulären Interstitium und tubulären Labyrinth. Cytobiologie 10:161–216

    Google Scholar 

  • Laurent TC, Ogston AG (1963) The interaction between polysaccharides and other macromolecules. 4. The osmotic pressure of mixtures of serum albumin and hyaluronic acid. Biochem J 89:249–253

    PubMed  Google Scholar 

  • Leiper JM, Thomson D, MacDonald MK (1977) Uptake and transport of imposil by the glomerular mesangium in the mouse. Lab Invest 37:526–533

    PubMed  Google Scholar 

  • Lever AF, Peart WS (1962) Renin and angiotensin-like activity in renal lymph. J Physiol 160:548–563

    PubMed  Google Scholar 

  • Lewy JE, Windhager E (1968) Peritubular control of proximal tubular reabsorption in the rat kidney. Am J Physiol 214:943–954

    PubMed  Google Scholar 

  • Mackensen-Haen S, Bader R, Grund KE, Bohle A (1981) Correlations between renal cortical interstitial fibrosis, atrophy of the proximal tubules and impairment of the glomerular filtration rate. Clin Nephrol 15:167–171

    PubMed  Google Scholar 

  • Maunsbach AB (1976) Cellular mechanisms of tubular protein transport. In: Thurau K (ed) Kidney and urinary tract physiology II, vol 2. University Park Press, Baltimore, pp 147–167. Guyton AC (ed) Int Rev Physiol Series

    Google Scholar 

  • Maunsbach AB, Olson TS, Christensen L (1980) Functional ultrastructure of the kidney. Academic Press, New York, pp 399–474

    Google Scholar 

  • Mayerson HS (1963) The physiologic importance of lymph. In: Hamilton WF (ed) Circulation, vol II. Am Physiol Soc, Washington, DC (Handbook of physiology, sect 2, pp 1035–1073)

    Google Scholar 

  • Meier P, Zierler KL (1954) On the theory of the indicator-distribution method for measurements of blood flow and volume. J Appl Physiol 6:731–744

    PubMed  Google Scholar 

  • Moffat DB (1969) Extravascular protein in the renal medulla. Q J Exp Physiol 54:60–67

    Google Scholar 

  • Moffat DB, Williams MMM (1974) The effect of antidiuretic hormone on the extravascular protein in the renal medulla. Experientia 15:556–557

    Article  Google Scholar 

  • Morard JC, Poirier MF (1968) Fonction des mucopolysaccharides et des mucoides acides de la medullaire rénale dans l'elaboration de l'urine. I. Etudes histochimiques au cours de la diurese normale. J Physiol (Paris) 60:297–321

    Google Scholar 

  • Morard JC, Abadie A (1968) Fonction des mucopolysaccharides et des mucoides acides de la medullaire rénale dans l'elaboration de l'urine. II. Etudes histochimiques au cours de diurese controlées. J Physiol (Paris) 60:323–356

    Google Scholar 

  • Ochwadt B (1964) The measurement of intrarenal blood flow distribution by wash-out technique. Int Congr Series 78:62–64

    Google Scholar 

  • Oken DE, Flamenbaum W (1971) Micropuncture studies of proximal tubule albumin concentrations in normal and nephrotic rats. J Clin Invest 50:1498–1505

    PubMed  Google Scholar 

  • O'Morchoe CCC, O'Morchoe PJ (1968) Renal contribution to thoracic duct lymph in dogs. J Physiol (Lond) 194:305–315

    PubMed  Google Scholar 

  • O'Morchoe CCC, O'Morchoe PJ, Albertine KH, Jarosz HM (1981) Concentration of renin in the renal interstitium, as reflected in lymph. In: Berlyne GM, Thomas S (eds) Renal physiology, vol 4. Karger, Basel, pp 199–206

    Google Scholar 

  • Pedersen JC, Persson AEG, Maunsbach AB (1980) Ultrastructure and quantitative characterization of the cortical interstitium in the rat kidney. In: Maunsbach AB, Olsen TS, Christensen EL (eds) Functional ultrastructure of the kidney. Academic Press, London New York, pp 443–457

    Google Scholar 

  • Perl W (1975) Convection and permeation of albumin between plasma and interstitium. Microvasc Res 10:83–94

    Article  PubMed  Google Scholar 

  • Persson AEG (1980) Functional aspects of the renal interstitium. In: Maunsbach AB, Olsen TS, Christensen EL (eds) Ultrastructure of the kidney. Academic Press, London New York, pp 399–410

    Google Scholar 

  • Persson AEG, Muller-Suur R, Selen G (1979) Capillary oncotic pressure as a modifier for tubuloglomerular feedback. Am J Physiol 236:F97–F102

    PubMed  Google Scholar 

  • Pfaller W, Rittinger M (1977) Quantitative Morphologie der Niere. Mikroskopie 33:74–79

    PubMed  Google Scholar 

  • Pfaller W, Rittinger M (1980) Quantitative morphlogy of the rat kidney. Int J Biochem 12:17–22

    Article  PubMed  Google Scholar 

  • Pinter GG (1967) Distribution of chylomicrons and albumin in dog kidney. J Physiol (Lond) 192:761–772

    PubMed  Google Scholar 

  • Pinter GG, Wilson PD (1981) Renal cortical interstitium and renal lymph with remarks on a stochastic conception of the reflexion coefficient of the peritubular capillary wall. In: Takacs L (ed) Advances in Physiological Science, vol II. Pergamon Press, New York, pp 57–73

    Google Scholar 

  • Pinter GG, Atkins JL, Bell DR, Stork JE (1975a) Permeability of the peritubular capillaries to albumin. Implication for the reflexion coefficient. (Abstract) 6th International Congress of Nephrology

    Google Scholar 

  • Pinter GG, O'Morchoe CCC, Atkins JL (1975b) Quantitative measurement of total renal lymph drainage. An experimental tracer study in dogs. In: Winkel K zum, Blaufox MD, Funck-Brentano JL (eds) Radionuclides in nephrology). Thieme, Stuttgart, pp 29–33

    Google Scholar 

  • Pinter GG, Wilson PD, Bell DR, Atkins JL, Stork JE (1980) Interstitial albumin pool in the renal cortex: its turnover and the permeability of peritubular capillaries. In: Maunsbach AB, Olsen TS, Christensen EI (eds) Functional ultrastructure of the kidney. Academic Press, London New York, pp 411–422

    Google Scholar 

  • Pinter GG, Alt J, Gärtner K, Lübow J, Stolte H, Wilson PD (1981a) Do extravasated protein molecules reenter the peritubular capillaires in the renal cortex of rats. (Abstracts) 8th International Congress of Nephrology

    Google Scholar 

  • Pinter GG, Reese DA, Gärtner K, Reese AH (1981b) Lack of short-term effect of HgCl2 on the albumin permeability of the peritubular capillaries in rat renal cortex (Abstract). Tel Aviv Satellite Symposium on Acute Renal Failure, Tel Aviv, Israel, p 54

    Google Scholar 

  • Pinter GG, Wilson PD, Stork JE, Fajer AB (to be published) Functional manifestations of microangiopathy in experimental diabetes mellitus in the renal postglomerular circulation. Proceedings of the workshop Lessons from Animals Diabetes, Jerusalem, November 1982

    Google Scholar 

  • Polosa C, Hamilton WF (1962) The relation between cells and plasma within the renal vasculature. Arch Int Pharmacodyn 140:294–307

    PubMed  Google Scholar 

  • Reinking LN, Schmidt-Nielsen B (1981) Peristaltic flow of urine in the renal papillary collecting ducts of hamsters. Kidney Int 20:55–60

    PubMed  Google Scholar 

  • Riemenschneider T, Mackensen-Haen S, Christ H, Bohle A (1980) Correlation between endogenous creatinine clearance and relative interstitial volume of the renal cortex in patients with diffuse membranous glomerulonephritis having a normal serum creatinine concentration. Lab Invest 43:145–149

    PubMed  Google Scholar 

  • Robertson CR, Deen WM, Troy JL, Brenner BM (1972) Dynamics of glomerular ultrafiltration in the rat. III. Hemodynamics and autoregulation. Am J Physiol 223:1191–1200

    PubMed  Google Scholar 

  • Rojo-Ortega JM, Yeghiayan E, Genest J (1973) Lymphatic capillaries in the renal cortex of the rat. Lab Invest 29:336–341

    PubMed  Google Scholar 

  • Rusznyák I, Földi M, Szabo G (1967) Lymphatics and lymph circulation. Physiology and pathology. Pergamon Press, New York

    Google Scholar 

  • Skinner SL, McCubbin JW, Page IH (1963) Angiotensin in blood and lymph following reduction in renal arterial perfusion pressure in dogs. Circ Res 13:336–345

    PubMed  Google Scholar 

  • Starling EH (1896) On the absorption of fluids from the connective tissue spaces. J Physiol (Lond) 19:312–326

    Google Scholar 

  • Stephenson JL (1948) Theory of the measurement of blood flow by the dilution of an indicator. Bull Math Biophys 10:117–121

    Google Scholar 

  • Stork JE, Wilson PD, Reese DA, Urbaitis BK, Blake WD, Pinter GG (1977) Lack of effect of splanchnic nerve sectioning on the albumin permeability of the peritubular capillaries. (Abstract) Proceedings of 2nd European Colloquium on Renal Physiology

    Google Scholar 

  • Stork JE, Wilson PD, Pinter GG (1980) Interstitial albumin pool in renal cortex: The permeability of the peritubular capillaries in experimental diabetes mellitus. In: Maunsbach AB, Olsen TS, Christensen EI (eds) Functional ultrastructure of the kidney. Academic Press, London New York, pp 423–429

    Google Scholar 

  • Swann HG (1960) The functional distension of the kidney: a review. Tex Rep Biol Med 18:566–595

    PubMed  Google Scholar 

  • Tighe JR (1975) The mesangium in glomerular disease. Proc R Soc Med 68:151–158

    PubMed  Google Scholar 

  • Ulfendahl HR, Pinter GG, Atkins JL, Wolgast M, Agerup B (1973) Total lymph flow of rat kidney. Acta Physiol Scand [Suppl] 396:92

    Google Scholar 

  • Vogel G, Heym E, Andersohn K (1955) Versuche zur Bedeutung kolloidosmotischer Druckdifferenzen für einen passiven Transportmechanismus in den Nierenkanälchen. Anat Embryol (Berl) 126:485–489

    Google Scholar 

  • Vogel G, Ulbrich M, Gärtner K (1969) Über den Austausch des extravasalen Plasma-Albumins (131J-Albumin) der Niere mit dem Blut und den Abfluß von Makromolekülen (Polyvinylpyrrolidon) mit der Nierenlymphe bei normaler und durch Furosemid gehemmter tubulärer Reabsorption. Pfluegers Arch 305:47–64

    Article  Google Scholar 

  • Vogel G, Gärtner K, Ulbrich M (1974) The flow rate and macromolecule content of hilar lymph from the rabbit's kidney under conditions of renal venous pressure elevation and restriction of renal function — studies on the origin of renal lymph. Lymphology 3:136–143

    Google Scholar 

  • Wagner RC, Casely-Smith JR (1981) Endothelial vesicles (review). Microvasc Res 21:267–298

    Article  PubMed  Google Scholar 

  • Wilson PD, Pinter GG (1979) A model for heterogeneity of kinetics of albumin transport in the renal cortical interstitium. Math Biosci 46:1–10

    Article  Google Scholar 

  • Witte S, Zenzes-Geprägs S (1977) Extravascular protein measurements in vivo and in sites by ultramicrospectrophotometry. Microvasc Res 13:225–231

    Article  PubMed  Google Scholar 

  • Wolgast M, Larson M, Nygren K (1981) Functional characteristic of the renal interstitium. Am J Physiol 241:F105–F111 (Editorial review)

    PubMed  Google Scholar 

  • Yang VV, O'Morchoe PJ, O'Morchoe CCC (1981) Transport of protein across lymphatic endothelium in the rat kidney. Microvasc Res 21:75–91

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor Jan Brod of the Medizinische Hochschule, Hannover, GFR, on the occasion of his 70 birthay

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag

About this chapter

Cite this chapter

Pinter, G.G., Gärtner, K. (1984). Peritubular capillary, interstitium, and lymph of the renal cortex. In: Reviews of Physiology, Biochemistry and Pharmacology, Volume 99. Reviews of Physiology, Biochemistry and Pharmacology, vol 99. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0027717

Download citation

  • DOI: https://doi.org/10.1007/BFb0027717

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-12989-9

  • Online ISBN: 978-3-540-38815-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics