Skip to main content

Modified model reference adaptive control: Design, analysis and performance bounds

  • Conference paper
  • First Online:
Proceedings of Workshop on Advances in Control and its Applications

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 208))

  • 191 Accesses

Abstract

Boundedness of all closed loop signals and asymptotic convergence of the tracking error to zero or to a residual set are the criteria that have been most commonly used to characterize the performance of model reference adaptive control schemes in the absence of persistently exciting signals. These criteria do not reveal the large transient oscillations often observed in simulations and do not exclude the possibility of bursting at steady state in the presence of small modelling errors. The purpose of this paper is to address the issue of performance by using two additional criteria to assess performance in the ideal and non-ideal situations. They are the mean square tracking error criterion and the L tracking error bound criterion. We use these criteria to examine the performance of a standard model reference adaptive controller and motivate the design of a modified scheme that can have an arbitrarily improved nominal performance in the ideal case and in the presence of bounded input disturbances. It is shown that for these cases the modified scheme can provide an arbitrarily improved zero-state transient performance and an arbitrary reduction in the size of possible bursts that may occur at steady state. As in every robust control design the nominal performance has to be traded off with robust stability and therefore the improvement in performance achieved by the proposed scheme is limited by the size of the unmodelled dynamics, as established in the paper. Another expected limitation to nominal performance is sensor noise which due to space limitation is not examined here.

This work was supported by the National Science Foundation under Grants ECS-9119722 and ECS-9210726.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. S. Morse, “Global Stability of Parameter Adaptive Control Systems,” IEEE Trans. on Automat. Contr., Vol. AC-25, 433–439, June 1980.

    Article  Google Scholar 

  2. K. S. Narendra, Y. H. Lin, and L. S. Valavani, “Stable Adaptive Controller Design — Part II: Proof of Stability,” IEEE Trans. on Automat. Contr., Vol. AC-25, 440–448, June 1980.

    Article  Google Scholar 

  3. G. C. Goodwin, P. J. Ramadge and P. E. Caines, “Discrete time multivariable adaptive control,” IEEE Trans. on Automat. Contr., Vol. AC-25, 449–456, June 1980.

    Article  Google Scholar 

  4. P. A. Ioannou and P. V. Kokotovic, Adaptive Systems with Reduced Models, Berlin: Springer-Verlag, 1983.

    Google Scholar 

  5. C. E. Rohrs, L. Valavani, M. Athans and G. Stein, “Robustness of Continuous-time Adaptive Control Algorithms in the Presence of Unmodelled Dynamics,” IEEE Trans. on Automat. Contr., Vol. AC-30, No. 9, 881–889, Sept. 1985.

    Article  Google Scholar 

  6. P. A. Ioannou and P. V. Kokotovic, “Instability Analysis and the Improvement of Robustness of Adaptive Control,” Automatica, Vol. 20, No. 5, Sept. 1984.

    Google Scholar 

  7. P. A. Ioannou and K. S. Tsakalis, “A Robust Direct Adaptive Controller,” IEEE Trans. on Automat. Contr., Vol. AC-31, No. 11, 1033–1043, Nov. 1986.

    Article  Google Scholar 

  8. K. S. Narendra and A. M. Annaswamy, Stable Adaptive Systems. Prentice Hall, 1989.

    Google Scholar 

  9. L. Praly, “Robust Model Reference Adaptive Controllers — Part 1: Stability Analysis,” in Proc. 23rd IEEE Conf. Decision Contr., 1984.

    Google Scholar 

  10. G. Kreisselmeier, “A Robust Indirect Adaptive Control Approach,” Int. Journal of Control, Vol. 43, No. 1, 161–175, 1986.

    Google Scholar 

  11. P. Ioannou and J. Sun, “Theory and Design of Robust Direct and Indirect Adaptive Control Schemes,” Int. Journal of Control, Vol. 47, No. 3, 775–813, 1988.

    Google Scholar 

  12. R. H. Middleton, G. C. Goodwin, D. J. Hill and D. Q. Mayne, “Design Issues in Adaptive Control,“ IEEE Trans. on Automat. Contr., Vol. AC-33, No. 1, 50–58, Jan., 1988.

    Article  Google Scholar 

  13. B. D. O. Anderson, R. R. Bitmead, C. R. Johnson, Jr., P. V. Kokotovic, R. L. Kosut, I. Mareels, L. Praly and B. D. Riedle, Stability of Adaptive Systems: Passivity and Averaging Analysis. Cambridge, MA: M. I. T. Press, 1986.

    Google Scholar 

  14. S. Sastry and M. Bodson, Adaptive Control: Stability, Convergence and Robustness. Prentice Hall, 1989.

    Google Scholar 

  15. P. A. Ioannou and K. S. Tsakalis, “Time and Frequency Domain Bounds in Robust Adaptive Control,” Proceedings of the American Control Conference, 1988.

    Google Scholar 

  16. K. S. Tsakalis, “Robustness of Model Reference Adaptive Controllers: An Input-Output Approach,” IEEE Trans. on Automat. Contr., Vol. AC-37, No. 5, 556–565, May 1992.

    Article  Google Scholar 

  17. J. M. Krause, P. P. Khargonekar and G. Stein, “Robust Adaptive Control: Stability and Asymptotic Performance,” IEEE Trans. on Automat. Contr., Vol. AC-37, No. 3, 316–331, Mar., 1992.

    Article  Google Scholar 

  18. Z. Zang and R. R. Bitmead, “Transient Bounds for Adaptive Control Systems,” Proc. 29th IEEE Conf. Decision Contr., 2724–2729, 1990.

    Google Scholar 

  19. I. M. Y. Mareels and R. R. Bitmead, “Nonlinear Dynamics in Adaptive Control: Chaotic and Periodic Stabilization,” Automatica, Vol. 22, 641–655, 1986.

    Article  Google Scholar 

  20. B. E. Ydstie, “Bifurcation and Complex Dynamics in Adaptive Control Systems,” in Proc. 25th IEEE Conf. Decision Contr., 1986.

    Google Scholar 

  21. M. P. Golden and B. E. Ydstie, “Chaos and Strange Attractors in Adaptive Control Systems,” in Proc. IFAC World Congress, Munich, Vol. 10, 127–132, 1987.

    Google Scholar 

  22. L. Hsu and R. R. Costa, “Bursting Phenomena in Continuous-Time Adaptive Systems with a σ-Modification,” IEEE Trans. on Automat. Contr., Vol. AC-32, No. 1, 84–86, Jan., 1987.

    Article  Google Scholar 

  23. P. A. Ioannou and G. Tao, “Dominant Richness and Improvement of Performance of Robust Adaptive Control,” Automatica, Vol. 25, No. 2, 287–291, March 1989.

    Article  Google Scholar 

  24. J. Sun, A. Olbrot and M. Polis, “Robust Stabilization and Robust Performance Using Model Reference Control and Modelling Error Compensation,” IEEE Trans. on Automat. Contr., Vol. AC-39, No. 3, 630–635, 1994.

    Article  Google Scholar 

  25. J. Sun, “A Modified Model Reference Adaptive Control Scheme for Improved Transient Performance,” IEEE Trans. on Automat. Contr., Vol. AC-38, No. 8, 1255–1259, Aug. 1993.

    Article  Google Scholar 

  26. D. E. Miller and E. J. Davison, “An Adaptive Controller Which Provides an Arbitrarily Good Transient and Steady State Response,” IEEE Trans. on Automat. Contr., Vol. AC-36, No. 1, 68–81, Jan., 1991.

    Article  Google Scholar 

  27. B. E. Ydstie, “Transient Performance and Robustness of Direct Adaptive Control,” IEEE Trans. on Automat. Contr., Vol.37, No. 8, 1091–1105, Aug. 1992.

    Article  Google Scholar 

  28. R. Ortega, “On Morse's New Adaptive Controller: Parameter Convergence and Transient Performance,” IEEE Trans. on Automat. Contr., Vol. AC-38, No. 8, 1191–1202, Aug. 1993.

    Article  Google Scholar 

  29. A. Datta and P. A. Ioannou, “Performance Improvement Versus Robust Stability in Model Reference Adaptive Control,” Proceedings of the 30th IEEE Conf. on Decision and Control, 748–753, Dec. 1991.

    Google Scholar 

  30. M. Krstic, P. V. Kokotovic and I. Kanellakopoulos, “Transient Performance Improvement with a New Class of Adaptive Controllers,” Systems & Control Letters, Vol. 21, 451–461, 1993.

    Google Scholar 

  31. B. A. Francis, A Course in H Control Theory, Berlin: Springer Verlag, 1987.

    Google Scholar 

  32. P. A. Ioannou and A. Datta, “Robust Adaptive Control: A Unified Approach,” Proceedings of the IEEE, Vol. 79, No. 12, 1736–1768, December 1991.

    Article  Google Scholar 

  33. G. C. Goodwin and D. Q. Mayne, “A Parameter Estimation Perspective of Continuous Time Model Reference Adaptive Control,” Automatica, Vol. 23, No. 1, 57–70, 1987.

    Article  Google Scholar 

  34. A. Datta and M. T. Ho, “On Modifying Model Reference Adaptive Control Schemes for Performance Improvement,” IEEE Trans. on Automat. Contr., Vol. 39, No. 9, Sept. 1994 (to appear).

    Google Scholar 

  35. M. Vidyasagar, Control System Synthesis: A Factorization Approach. MIT Press, Cambridge, 1985.

    Google Scholar 

  36. C. A. Desoer and M. Vidyasagar, Feedback Systems: Input-Output Properties. Academic Press, New York, 1975.

    Google Scholar 

  37. V. M. Popv, Hyperstability of Control Systems. Springer-Verlag, New York, 1973.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Hassan K. Khalil (Professor)Joe H. Chow (Professor)Petros A. Ioannou (Professor)

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag London Limited

About this paper

Cite this paper

Datta, A., Ioannou, P.A. (1996). Modified model reference adaptive control: Design, analysis and performance bounds. In: Khalil, H.K., Chow, J.H., Ioannou, P.A. (eds) Proceedings of Workshop on Advances in Control and its Applications. Lecture Notes in Control and Information Sciences, vol 208. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0027701

Download citation

  • DOI: https://doi.org/10.1007/BFb0027701

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-19993-9

  • Online ISBN: 978-3-540-39384-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics