Skip to main content

The mammalian muscle spindle and its central control

  • Chapter
  • First Online:

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 101))

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdullah A, Eldred E (1959) Activity in gamma efferent circuits induced by distension of the bladder. Neuropath Exp Neurol 18:590–596

    Google Scholar 

  • Abrahams VC (1981) Sensory and motor specialization in some muscles of the neck. TINS 4:24–27

    Google Scholar 

  • Adal MN, Barker D (1962) Intramuscular diameters of afferent nerve fibres in the rectus femoris muscle of the cat. In: Barker D (ed) Symposium on muscle receptors. Hong Kong University Press, Hong Kong, pp 249–256

    Google Scholar 

  • Adal MN, Barker D (1965) Intramuscular branching of fusimotor fibres. J Physiol 177:288–299

    Google Scholar 

  • Adrian ED, Zotterman Y (1926) The impulses produced by sensory nerve endings. part 2. The response of a single end-organ. J Physiol 61:151–171

    Google Scholar 

  • Agnew RF, Preston JB (1965) Motor cortex-pyramidal effects on single ankle flexor and extensor motoneurones of the cat. Exp Neurol 12:384–398

    Google Scholar 

  • Agnew RF, Preston JB, Whitlock DG (1963) Patterns of motor cortex effects on ankle flexor and extensor motoneurones in the “pyramidal” cat preparation. Exp Neurol 8:248–263

    Google Scholar 

  • Alnaes E, Jansen JKS, Rudjord T (1964) Fusimotor activity in the spinal cat. Acta Physiol Scand 63:197–212

    Google Scholar 

  • Andén NE, Jukes MGM, Lundberg A, Vycklický L (1966a) The effect of DOPA on the spinal cord. 1. The influence on transmission of primary afferents. Acta Physiol Scand 67:373–386

    Google Scholar 

  • Andén NE, Jukes MGM, Lundberg A (1966b) The effect of DOPA on the spinal cord. 2. A pharmacological analysis. Acta Physiol Scand 67:387–397

    Google Scholar 

  • Andersson BF, Lennerstrand G, Thoden U (1968a) Fusimotor effects on position and velocity sensitivity of spindle endings in the external intercostal muscle of the cat. Acta Physiol Scand 74:285–300

    Google Scholar 

  • Andersson BF, Lennerstrand G, Thoden U (1968b) Response characteristics of muscle spindle endings at constant length to variations in fusimotor activation. Acta Physiol Scand 74:301–318

    Google Scholar 

  • Andrew BL, Part NJ (1974) The division of control of muscle spindles between fusimotor and mixed skeletofusimotor fibres in rat caudal muscle. Q J Exp Physiol 59:331–349

    Google Scholar 

  • Andrew BL, Leslie GC, Part NJ (1978) Some observations on the efferent innervation of rat soleus muscle spindles. Exp Brain Res 31:433–443

    Google Scholar 

  • Andrew BL, Leslie GC, Part NJ (1979) Some observations on responses evoked by pinna stimulation in efferent and afferent fibres innervating hindlimb muscle spindles of the rat. Exp Brain Res 34:263–272

    Google Scholar 

  • Appelberg B (1981) Selective central control of dynamic gamma motoneurones utilised for the functional classification of gamma cells. In: Taylor A, Prochazka A (eds) Muscle receptors and movement. MacMillan, London, pp 97–107

    Google Scholar 

  • Appelberg B, Emonet-Dénand F (1965) Central control of static and dynamic sensitivities of muscle spindle primary endings. Acta Physiol Scand 63:487–494

    Google Scholar 

  • Appelberg B, Kozary IZ (1963) Excitation of flexor fusimotor neurones by electrical stimulation in the red nucleus. Acta Physiol Scand 59:445–453

    Google Scholar 

  • Appelberg B, Molander C (1967) A rubro-olivary pathway. I. Identification of a descending system for control of the dynamic sensitivity of muscle spindles. Exp Brain Res 3:372–381

    Google Scholar 

  • Appelberg B, Bessou P, Laporte Y (1966) Action of static and dynamic fusimotor fibres on secondary endings of cat's spindles. J Physiol 185:160–171

    Google Scholar 

  • Appelberg B, Jeneskog T, Johansson H (1975) Rubrospinal control of static and dynamic fusimotor neurones. Acta Physiol Scand 95:431–440

    Google Scholar 

  • Appelberg B, Johansson H, Kalistratov G (1977) The influence of group II muscle afferents and low threshold skin afferents on dynamic fusimotor neurones to the triceps surae of the cat. Brain Res 132:153–158

    Google Scholar 

  • Appelberg B, Hulliger M, Johansson H, Sojka P (1979) Excitation of dynamic fusimotor neurones of the cat triceps surae by contralateral joint afferents. Brain Res 160:529–532

    Google Scholar 

  • Appelberg B, Hulliger M, Johansson H, Sojka P (1981) Reflex activation of dynamic fusimotor neurons by natural stimulation of muscle and joint receptor afferent units. In: Taylor A, Prochazka A (eds) Muscle receptors and movement. MacMillan, London, pp 149–161

    Google Scholar 

  • Appelberg B, Hulliger M, Johansson H, Sojka P (1982a) Fusimotor reflexes in triceps surae elicited by natural stimulation of muscle afferents from the cat ipsilateral hindlimb. J Physiol 329:211–229

    Google Scholar 

  • Appelberg B, Hulliger M, Johansson H, Sojka P (1982b) An intracellular study of rubrospinal and rubro-bulbospinal control of lumbar γ-motoneurones. Acta Physiol Scand 116:377–386

    Google Scholar 

  • Appelberg B, Hulliger M, Johansson H, Sojka P (1983a) Actions on γ-motoneurones elicited by electrical stimulation of muscle group I afferent fibres in the hindlimb of the cat. J Physiol 335:237–253

    Google Scholar 

  • Appelberg B, Hulliger M, Johansson H, Sojka P (1983b) Actions on γ-motoneurones elicited by electrical stimulation of muscle group II afferent fibres in the hindlimb of the cat. J Physiol 335:255–273

    Google Scholar 

  • Appelberg B, Hulliger M, Johansson H, Sojka P (1983c) Actions on γ-motoneurones elicited by electrical stimulation of muscle group III afferent fibres in the hindlimb of the cat. J Physiol 335:275–292

    Google Scholar 

  • Appelberg B, Hulliger M, Johansson H, Sojka P (1983d) Recurrent actions on γ-motoneurones mediated via large and small ventral root fibres in the cat. J Physiol 335:293–305

    Google Scholar 

  • Appenteng K, Morimoto T, Taylor A (1980) Fusimotor activity in masseter nerve of the cat during reflex jaw movements. J Physiol 305:415–431

    Google Scholar 

  • Appenteng K, Lund JP, Seguin JJ (1982a) Behavior of cutaneous mechanoreceptors recorded in mandibular division of gasserian ganglion of the rabbit during movements of the lower jaw. J Neurophysiol 47:151–166

    Google Scholar 

  • Appenteng K, Prochazka A, Proske U, Wand P (1982b) Effect of fusimotor stimulation on Ia discharge during shortening of cat M. soleus at different speeds. J Physiol 329:509–526

    Google Scholar 

  • Appenteng K, Hulliger M, Prochazka A, Zangger P (1983) Fusimotor action during movement, deduced by matching the patterns of afferent discharge in freely moving and anaesthetized cats. J Physiol 334:29–30P

    Google Scholar 

  • Arbuthnott ER, Ballard KJ, Boyd IA, Gladden MH, Sutherland FI (1982) The ultrastructure of cat fusimotor endings and their relationship to foci of sarcomere convergence in intrafusal fibres. J Physiol 331:285–309

    Google Scholar 

  • Ariano MA, Armstrong RB, Edgerton VR (1973) Hindlimb muscle fibre populations of five mammals. J Histochem Cytochem 21:51–55

    Google Scholar 

  • Bakker GJ, Richmond FJR (1981) Two types of muscle spindles in cat neck muscles: a histochemical study of intrafusal fibre composition. J Neurophysiol 45:973–986

    Google Scholar 

  • Bakker DA, Richmond FJR (1982) Muscle spindle complexes in muscles around upper cervical vertebrae in the cat. J Neurophysiol 48:62–74

    Google Scholar 

  • Baldissera F, Hultborn H, Illert M (1981) Integration in spinal neuronal systems. In: Brookhart JM, Mountcastle VB, Brooks VB (eds) Motor control, part 1. American Physiological Society, Bethesda, pp 509–595 (Handbook of physiology, Sect 1, vol 2)

    Google Scholar 

  • Ballard KJ (1978) Typical sympathetic noradrenergic endings in a muscle spindle of the cat. J Physiol 285:61–62P

    Google Scholar 

  • Banks RW (1971) Histochemical studies on rabbit intrafusal fibres. J Anat 108:613–614

    Google Scholar 

  • Banks RW (1981) A histological study of the motor innervation of the cat's muscle spindle. J Anat 133:571–591

    Google Scholar 

  • Banks RW, Barker D, Stacey MJ (1977a) Intrafusal branching and distribution of primary and secondary afferents. J Physiol 272:66–67P

    Google Scholar 

  • Banks RW, Harker DW, Stacey MJ (1977b) A study of mammalian intrafusal muscle fibres using a combined histochemical and ultrastructural technique. J Anat 123:783–796

    Google Scholar 

  • Banks RW, Barker D, Bessou P, Pagès B, Stacey MJ (1978) Histological analysis of cat muscle spindles following direct observation of the effects of stimulating dynamic and static motor axons. J Physiol 283:605–619

    Google Scholar 

  • Banks RW, Barker D, Stacey MJ (1979) Sensory innervation of cat hindlimb muscle spindles. J Physiol 293:40–41P

    Google Scholar 

  • Banks RW, Barker D, Stacey MJ (1981a) Structural aspects of fusimotor effects on spindle sensitivity. In: Taylor A, Prochazka A (eds) Muscle receptors and movement. MacMillan, London, pp 5–16

    Google Scholar 

  • Banks RW, Ellaway PH, Scott JJ (1981b) Responses of de-efferented muscle spindles of peroneus brevis and tertius muscles in the cat. J Physiol 210:53P

    Google Scholar 

  • Banks RW, Barker D, Stacey MJ (1982) Form and distribution of sensory terminals in cat hindlimb muscle spindles. Philos Trans R Soc Lond (Biol) 299:329–364

    Google Scholar 

  • Barany M (1967) ATPase activity of myosin correlated with speed of muscle shortening. J Gen Physiol (Suppl) 50:197–216

    Google Scholar 

  • Barker D (ed) (1962a) Symposium on muscle receptors. Hong Kong University Press, Hong Kong

    Google Scholar 

  • Barker D (ed) (1962b) The structure and distribution of muscle receptors. In: Symposium on muscle receptors. Hong Kong University Press, Hong Kong, pp 227–240

    Google Scholar 

  • Barker D (1966) Three types of motor ending in cat spindles. J Physiol 186:27–28P

    Google Scholar 

  • Barker D (1974a) The morphology of muscle receptors. In: Hunt CC (ed) Muscle receptors. Springer, Berlin Heidelberg New York, pp 1–190 (Handbook of sensory physiology, vol 3, pt 2)

    Google Scholar 

  • Barker D (1974b) Symposium on muscle spindles. J Anat 119:193–207

    Google Scholar 

  • Barker D, Hunt JP (1964) Mammalian intrafusal muscle fibres. Nature 203:1193

    Google Scholar 

  • Barker D, Ip MC (1961) A study of single and tandem types of muscle spindle in the cat. Proc R Soc Lond (Biol) 154:377–397

    Google Scholar 

  • Barker D, Ip MC (1965) The motor innervation of cat and rabbit muscle spindles. J Physiol 177:27–28P

    Google Scholar 

  • Barker D, Milburn A (1982) Development of cat muscle spindles. J Physiol 325:85P

    Google Scholar 

  • Barker D, Saito M (1981) Autonomic innervation of receptors and muscle fibres in cat skeletal muscle. Proc R Soc Lond (Biol) 212:317–332

    Google Scholar 

  • Barker D, Stacey MJ (1970) Rabbit intrafusal fibres. J Physiol 210:70–72P

    Google Scholar 

  • Barker D, Stacey MJ (1981) On the innervation of bag1 fibres in cat muscle spindles by static γ-axons. J Physiol 320:93P

    Google Scholar 

  • Barker D, Stacey MJ, Adal MN (1970) Fusimotor innervation in the cat. Philos Trans R Soc Lond (Biol) 258:315–346

    Google Scholar 

  • Barker D, Bessou P, Jankowska E, Pagès B, Stacey MJ (1972) Distribution des axones fusimoteurs statiques et dynamiques aux fibres musculaires intrafusales chez le chat. C R Hebd Séances Acad Sci (III) 275:2527–2530

    Google Scholar 

  • Barker D, Emonet-Dénand F, Laporte Y, Proske U, Stacey MJ (1973) Morphological identification and intrafusal distribution of the endings of static fusimotor axons in the cat. J Physiol 230:405–427

    Google Scholar 

  • Barker D, Banks RW, Harker DW, Milburn A, Stacey MJ (1976a) Studies of the histochemistry, ultrastructure, motor innervation, and regeneration of mammalian intrafusal muscle fibres. Prog Brain Res 44:67–88

    Google Scholar 

  • Barker D, Emonet-Dénand F, Harker DW, Jami L, Laporte Y (1976b) Distribution of fusimotor axons to intrafusal muscle fibres in cat tenuissimus spindles as determined by the glycogen-depletion method. J Physiol 261:49–69

    Google Scholar 

  • Barker D, Emonet-Dénand F, Harker DW, Jami L, Laporte Y (1977) Types of intra-and extrafusal muscle fibre innervated by dynamic skeleto-fusimotor axons in cat peroneus brevis and tenuissimus muscles, as determined by the glycogen-depletion method. J Physiol 266:713–726

    Google Scholar 

  • Barker D, Bessou P, Jankowska E, Pagès B, Stacey MJ (1978) Identification of intrafusal muscle fibres activated by single fusimotor axons and injected with fluorescent dye in cat tenuissimus spindles. J Physiol 275:149–165

    Google Scholar 

  • Barker D, Emonet-Dénand F, Laporte Y, Stacey MJ (1980) Identification of the intrafusal endings of skeletofusimotor axons in the cat. Brain Res 185:227–237

    Google Scholar 

  • Baumann TK, Hulliger M (to be published, a) The dependence of the responses of muscle spindle Ia afferents to sinusoidal stretch on the velocity of concomitant triangular movement. J Physiol

    Google Scholar 

  • Baumann TK, Hulliger M (to be published, b) The power law description of the velocity response of the muscle spindle Ia afferent and its dependence on the parameters of mechanical stimulation. J Neurophysiol

    Google Scholar 

  • Baumann TK, Emonet-Dénand F, Hulliger M (1982) Long lasting after-effects of fusimotor stimulation on primary spindle afferents, revealed during slow movements. Brain Res 232:460–465

    Google Scholar 

  • Baumann TK, Emonet-Dénand F, Hulliger M (1983a) Temporal characteristics of the sensitivity-enhancing after-effects of fusimotor activity on spindle Ia afferents. Brain Res 258:139–143

    Google Scholar 

  • Baumann TK, Emonet-Dénand F, Hulliger M (1983b) After-effects of fusimotor activity: long-lasting enhancement of the dynamic sensitivity of Ia muscle spindle afferents following stimulation of dynamic or static gamma axons. Exp Brain Res (Suppl) 7:266–271

    Google Scholar 

  • Bergmans J, Grillner S (1968a) Changes in dynamic sensitivity of primary endings of muscle spindle afferents induced by DOPA. Acta Physiol Scand 74:629–636

    Google Scholar 

  • Bergmans J, Grillner S (1968b) Monosynaptic control of γ-motoneurones from the lower brain stem. Experientia 24:146–147

    Google Scholar 

  • Bergmans J, Grillner S (1969) Reciprocal control of spontaneous activity and reflex effects in static and dynamic flexor γ-motoneurones revealed by an injection of DOPA. Acta Physiol Scand 77:106–124

    Google Scholar 

  • Bessou P, Laporte Y (1961) Étude des récepteurs musculaires innervés par les fibres afférentes du groupe III (fibres myélinisées fines), chez le chat. Arch Ital Biol 99:293–321

    Google Scholar 

  • Bessou P, Pagès B (1969) Spindle secondary ending responses elicited by stimulation of static fusimotor axons. J Physiol 202:569–584

    Google Scholar 

  • Bessou P, Pagès B (1972) Intracellular potentials from intrafusal muscle fibres evoked by stimulation of static and dynamic fusimotor axons in the cat. J Physiol 227:709–727

    Google Scholar 

  • Bessou P, Pagès B (1975) Cinematographic analysis of contractile events produced in intrafusal muscle fibres by stimulation of static and dynamic fusimotor axons. J Physiol 252:397–427

    Google Scholar 

  • Bessou P, Emonet-Dénand F, Laporte Y (1963) Occurrence of intrafusal muscle fibre innervation by branches of slow α-motor fibres in the cat. Nature 198:594–595

    Google Scholar 

  • Bessou P, Emonet-Dénand F, Laporte Y (1965) Motor fibres innervating extrafusal and intrafusal muscle fibres in the cat. J Physiol 180:649–672

    Google Scholar 

  • Bessou P, Laporte Y, Pagès B (1966) Similitude des effets (statiques ou dynamiques) exercés par des fibres fusimotrices uniques sur les terminaisons primaires de plusieurs fuseaux chez le chat. J Physiol (Paris) 58:31–40

    Google Scholar 

  • Bessou P, Laporte Y, Pagès B (1968) Frequencygrams of spindle primary endings elicited by stimulation of static and dynamic fusimotor fibres. J Physiol 196:47–63

    Google Scholar 

  • Bessou P, Joffroy M, Pagès B (1981) Efferents and afferents in an intact muscle nerve: background activity and effects of sural nerve stimulation in the cat. J Physiol 320:81–102

    Google Scholar 

  • Bessou P, Joffroy M, Montoya R, Pagès B (1984) Effects of triceps stretch by ankle flexion on intact afferents and efferents of gastrocnemius in the decerebrate cat. J Physiol 346:73–91

    Google Scholar 

  • Bianconi R, van der Meulen JP (1963) The response to vibration of the end organs of mammalian muscle spindles. J Neurophysiol 26:177–190

    Google Scholar 

  • Binder MD, Stuart DG (1980) Responses of Ia and spindle group II afferents to single motor unit contractions. J Neurophysiol 43:621–629

    Google Scholar 

  • Binder MD, Kroin JS, Moore GP, Stauffer EK, Stuart DG (1976) Correlation analysis of muscle spindle responses to single motor unit contractions. J Physiol 257:325–336

    Google Scholar 

  • Bottermann BR, Eldred E (1982) Static stretch sensitivity of Ia and II afferents in the cat's gastrocnemius. Pflügers Arch 395:204–211

    Google Scholar 

  • Bottermann BR, Binder MD, Stuart DG (1978) Functional anatomy of the association between motor units and muscle receptors. Am Zool 18:135–152

    Google Scholar 

  • Boyd IA (1956) The tenuissimus muscle of the cat. J Physiol 133:35–36P

    Google Scholar 

  • Boyd IA (1962) The structure and innervation of the nuclear bag muscle fibre system and the nuclear chain muscle fibre system in mammalian muscle spindles. Philos Trans R Soc Lond (Biol) 245:81–136

    Google Scholar 

  • Boyd IA (1976a) The response of fast and slow nuclear bag fibres and nuclear chain fibres in isolated cat muscle spindles to fusimotor stimulation, and the effect of intrafusal contraction on the sensory endings. Q J Exp Physiol 61:203–254

    Google Scholar 

  • Boyd IA (1976b) The mechanical properties of dynamic nuclear bag fibres, static nuclear bag fibres and nuclear chain fibres in isolated cat muscle spindles. Prog Brain Res 44:33–50

    Google Scholar 

  • Boyd IA (1981a) The muscle spindle controversy. Sci Prog 67:205–221

    Google Scholar 

  • Boyd IA (1981b) The action of the three types of intrafusal fibre in isolated cat muscle spindles on the dynamic and length sensitivities of primary and secondary sensory endings. In: Taylor A, Prochazka A (eds) Muscle receptors and movement. MacMillan, London, pp 17–32

    Google Scholar 

  • Boyd IA, Davey MR (1968) Composition of peripheral nerves. Livingstone, Edinburgh

    Google Scholar 

  • Boyd IA, Ward J (1975) Motor control of nuclear bag and nuclear chain intrafusal fibres in isolated living muscle spindles from the cat. J Physiol 244:83–112

    Google Scholar 

  • Boyd IA, Ward J (1982) The diagnosis of nuclear chain intrafusal fibre activity from the nature of the group Ia and group II afferent discharge of isolated cat muscle spindles. J Physiol 321:17–18P

    Google Scholar 

  • Boyd IA, Gladden MH, McWilliam PN, Ward J (1975) “Static” and “dynamic” nuclear bag fibres in isolated cat muscle spindles. J Physiol 250:11–12P

    Google Scholar 

  • Boyd IA, Gladden MH, McWilliam PN, Ward J (1977) Control of dynamic and static nuclear bag fibres and nuclear chain fibres by gamma and beta axons in isolated cat muscle spindles. J Physiol 265:133–162

    Google Scholar 

  • Boyd IA, Gladden MH, Ward J (1983a) Suppression of the length sensitivity of primary sensory endings by nuclear chain fibres in cat muscle spindles. J Physiol 339:59P

    Google Scholar 

  • Boyd IA, Gladden MH, Ward J (1983b) Two types of static γ-axon having a predominantly static bag2 fibre action or predominantly chain fibre action in the several cat muscle spindles they supply. J Physiol 343:110P

    Google Scholar 

  • Brokensha G, Westbury DR (1974) Adaptation of the discharge of frog muscle spindles following a stretch. J Physiol 242:383–403

    Google Scholar 

  • Brown AG, Fyffe REW (1981) Direct observations on the contacts made between Ia afferent fibres and α-motoneurones in the cat's lumbosacral spinal cord. J Physiol 313:121–140

    Google Scholar 

  • Brown MC (1971a) A comparison of the spindles in two different muscles of the frog. J Physiol 216:553–563

    Google Scholar 

  • Brown MC (1971b) The responses of frog muscle spindles and fast and slow muscle fibres to a variety of mechanical inputs. J Physiol 218:1–17

    Google Scholar 

  • Brown MC, Butler RG (1973) Studies on the site of termination of static and dynamic fusimotor fibres within muscle spindles of the tenuissimus muscle of the cat. J Physiol 233:553–573

    Google Scholar 

  • Brown MC, Butler RG (1975) An investigation into the site of termination of static gamma fibres within muscle spindles of the cat peroneus longus muscle. J Physiol 247:131–143

    Google Scholar 

  • Brown MC, Butler RG (1976) Regeneration of afferent and efferent fibres to muscle spindles after nerve injury in adult cats. J Physiol 260:253–266

    Google Scholar 

  • Brown MC, Matthews PBC (1966) On the subdivision of the efferent fibres to muscle spindles into static and dynamic fusimotor fibres. In: Andrew BL (ed) Control and innervation of skeletal muscle. Truex, Oxford, pp 18–31

    Google Scholar 

  • Brown MC, Crowe A, Matthews PBC (1965) Observations on the fusimotor fibres of the tibialis posterior muscle of the cat. J Physiol 177:140–159

    Google Scholar 

  • Brown MC, Engberg I, Matthews PBC (1967a) The relative sensitivity to vibration of muscle receptors of the cat. J Physiol 192:773–800

    Google Scholar 

  • Brown MC, Engberg I, Matthews PBC (1967b) Fusimotor stimulation and the dynamic sensitivity of the secondary ending of the muscle spindle. J Physiol 189:545–550

    Google Scholar 

  • Brown MC, Lawrence DG, Matthews PBC (1968a) Reflex inhibition by Ia afferent input of spontaneously discharging motoneurones in the decerebrate cat. J Physiol 198:5–7P

    Google Scholar 

  • Brown MC, Lawrence DG, Matthews PBC (1968b) Antidromic inhibition of presumed fusimotor neurones by repetitive stimulation of the ventral root of the decerebrate cat. Experientia 24:1210

    Google Scholar 

  • Brown MC, Goodwin GM, Matthews PBC (1969a) After-effects of fusimotor stimulation on the response of muscle spindle primary endings. J Physiol 205:677–694

    Google Scholar 

  • Brown MC, Lawrence DG, Matthews PBC (1969b) Static fusimotor fibres and the position sensitivity of muscle spindle receptors. Brain Res 14:173–187

    Google Scholar 

  • Browne JS (1975) The responses of muscle spindles in sheep extraocular muscles. J Physiol 251:483–496

    Google Scholar 

  • Buchthal F, Schmalbruch H (1980) Motor unit of mammalian muscle. Physiol Rev 60:90–142

    Google Scholar 

  • Burg D, Szumski AJ, Struppler A, Velho F (1973) Afferent and efferent activation of human muscle receptors involved in reflex and voluntary contraction. Exp Neurol 41:754–768

    Google Scholar 

  • Burg D, Szumski AJ, Struppler A, Velho F (1974) Assessment of fusimotor contribution to reflex reinforcement in humans. J Neurol Neurosurg Psychiatry 37:1012–1021

    Google Scholar 

  • Burg D, Szumski AJ, Struppler A, Velho F (1976) Influence of a voluntary innervation on human muscle spindle sensitivity. In: Shahani M (ed) The motor system: Neurophysiology and muscle mechanisms, vol 4. Elsevier, Amsterdam, pp 95–110

    Google Scholar 

  • Burgess PR, Clark FJ (1969) Characteristics of knee joint receptors in the cat. J Physiol 203:317–335

    Google Scholar 

  • Burke D (1980) A reassessment of the muscle spindle contribution to muscle tone in normal and spastic man. In: Feldman RG, Young RR, Koella WP (eds) Spasticity: Disordered motor control. Symposia Specialists, Miami, pp 260–286

    Google Scholar 

  • Burke D (1981) The activity of human muscle spindle endings in normal motor behavior. Int Rev Physiol 20:91–136

    Google Scholar 

  • Burke D, Eklund G (1977) Muscle spindle activity in man during standing. Acta Physiol Scand 100:187–199

    Google Scholar 

  • Burke D, Hagbarth K-E, Löfstedt L, Wallin BG (1976a) The responses of human muscle spindle endings to vibration of non-contracting muscles. J Physiol 261:673–693

    Google Scholar 

  • Burke D, Hagbarth K-E, Löfstedt L, Wallin BG (1976b) The response of human muscle spindle endings to vibration during isometric contraction. J Physiol 261:695–711

    Google Scholar 

  • Burke D, Hagbarth K-E, Löfstedt L (1978a) Muscle spindle responses in man to changes in load during accurate position maintenance. J Physiol 276:159–164

    Google Scholar 

  • Burke D, Hagbarth K-E, Löfstedt L (1978b) Muscle spindle activity in man during shortening and lengthening contractions. J Physiol 277:131–142

    Google Scholar 

  • Burke D, Hagbarth K-E, Skuse NF (1978c) Recruitment order of human spindle endings in isometric voluntary contractions. J Physiol 285:101–112

    Google Scholar 

  • Burke D, Hagbarth K-E, Skuse NF (1979a) Voluntary activation of spindle endings in human muscles temporarily paralysed by nerve pressure. J Physiol 287:329–336

    Google Scholar 

  • Burke D, Skuse NF, Stuart DG (1979b) The regularity of muscle spindle discharge in man. J Physiol 291:277–290

    Google Scholar 

  • Burke D, McKeon B, Skuse NF, Westerman RA (1980a) Anticipation and fusimotor activity in preparation for a voluntary contraction. J Physiol 306:337–348

    Google Scholar 

  • Burke D, McKeon B, Westerman RA (1980b) Induced changes in the threshold for voluntary activation of human spindle endings. J Physiol 302:171–181

    Google Scholar 

  • Burke RE (1981) Motor units: anatomy, physiology, and functional organization. In: Brookhart JM, Mountcastle VB, Brooks VB (eds) Motor control, part 1. American Physiological Society, Bethesda, pp 345–422 (Handbook of physiology, sect 1, vol 2)

    Google Scholar 

  • Burke RE, Edgerton VR (1975) Motor unit properties and selective involvement in movement. In: Wilmore JH, Keogh JF (eds) Exercise and sports science reviews, vol 3. Academic, New York, pp 31–69

    Google Scholar 

  • Butler RG (1980) The organization of muscle spindles in the tenuissimus muscle of the cat during late development. Dev Biol 77:191–212

    Google Scholar 

  • Cabelguen JM (1981) Static and dynamic fusimotor controls in various hindlimb muscles during locomotor activity in the decorticate cat. Brain Res 213:83–97

    Google Scholar 

  • Cameron WE, Binder MD, Botterman BR, Reinking RM, Stuart DG (1981) “Sensory partitioning” of cat medial gastrocnemius muscle by its muscle spindles and tendon organs. J Neurophysiol 46:32–47

    Google Scholar 

  • Celio MR, Lutz H, Jenny E (1981) Myosin isoenzymes in rat muscle spindles. Neurosci Lett (Suppl) 7:100

    Google Scholar 

  • Chen WJ, Poppele RE (1973) Static fusimotor effect on the sensitivity of mammalian muscle spindles. Brain Res 57:244–247

    Google Scholar 

  • Chen WJ, Poppele RE (1978) Small-signal analysis of response of mammalian muscle spindles with fusimotor stimulation and a comparison with large-signal responses. J Neurophysiol 41:15–27

    Google Scholar 

  • Cheney PD, Preston JB (1976a) Classification and response characteristics of muscle spindle afferents in the primate. J Neurophysiol 39:1–8

    Google Scholar 

  • Cheney PD, Preston JB (1976b) Classification of fusimotor fibres in the primate. J Neurophysiol 39:9–19

    Google Scholar 

  • Cheney PD, Preston JB (1976c) Effects of fusimotor stimulation on dynamic and position sensitivities of spindle afferents in the primate. J Neurophysiol 39:20–30

    Google Scholar 

  • Clough JHM, Phillips CG, Sheridan JP (1971) The short latency projection from the baboon's motor cortex to fusimotor neurones of the forearm and hand. J Physiol 216:257–279

    Google Scholar 

  • Cody FWJ, Lee RWH, Taylor A (1972) A functional analysis of the components of the mesencephalic nucleus of the fifth nerve in the cat. J Physiol 226:249–261

    Google Scholar 

  • Cody FWJ, Harrison LM, Taylor A (1975) Analysis of activity of muscle spindles of the jaw-closing muscles during normal movements in the cat. J Physiol 253:565–582

    Google Scholar 

  • Cooper S (1961) The responses of primary and secondary endings of muscle spindles with intact motor innervation during applied stretch. Q J Exp Physiol 46:389–398

    Google Scholar 

  • Cooper S, Daniel PM (1956) Human muscle spindles. J Physiol 133:1–3P

    Google Scholar 

  • Cooper S, Daniel PM (1963) Muscle spindles in man: their morphology in the lumbricals and the deep muscles of the neck. Brain 86:563–586

    Google Scholar 

  • Cooper S, Gladden MH (1974) Elastic fibres and reticulin of mammalian muscle spindles and their functional significance. Q J Exp Physiol 59:367–385

    Google Scholar 

  • Corbin KB (1940) Observations on the peripheral distribution of the fibres arising in the mesencephalic nucleus of the fifth cranial nerve. J Comp Neurol 73:153–177

    Google Scholar 

  • Corda M, von Euler C, Lennerstrand G (1965) Proprioceptive innervation of the diaphragm. J Physiol 178:161–177

    Google Scholar 

  • Corda M, von Euler C, Lennerstrand G (1966) Reflex and cerebellar influences on α-and on “rhythmic” and “tonic” γ-activity in the intercostal muscle. J Physiol 184:898–923

    Google Scholar 

  • Critchlow V, von Euler C (1963) Intercostal muscle spindle activity and its gamma motor control. J Physiol 168:820–847

    Google Scholar 

  • Crowe A, Matthews PBC (1964a) The effects of stimulation of static and dynamic fusimotor fibres on the response to stretching of the primary endings of muscle spindles. J Physiol 174:109–131

    Google Scholar 

  • Crowe A, Matthews PBC (1964b) Further studies of static and dynamic fusimotor fibres. J Physiol 174:132–151

    Google Scholar 

  • Cullheim S, Ulfhake B (1979) Observations on the morphology of intracellularly stained γ-motoneurones in relation to their axon conduction velocity. Neurosci Lett 13:47–50

    Google Scholar 

  • Cussons PD, Hulliger M, Matthews PBC (1977) Effects of fusimotor stimulation on the response of the secondary ending of the muscle spindle to sinusoidal stretching. J Physiol 270:835–850

    Google Scholar 

  • Davey MR, Taylor A (1966) Activity of jaw muscle stretch receptors recorded from their cell bodies in the midbrain during spontaneous jaw movements. J Physiol 185:62–63P

    Google Scholar 

  • Decorte L, Emonet-Dénand F, Harker DW, Jami L, Laporte Y (1984) Glycogen depletion elicited in tenuissimus intrafusal muscle fibres by stimulation of static γ-axons in the cat. J Physiol 346:341–352

    Google Scholar 

  • Diete-Spiff K, Dodsworth H, Pascoe JE (1962) An analysis of the effect of ether and ethyl chloride on the discharge frequency of gastrocnemius fusimotor neurones in the rabbit. In: Barker D (ed) Symposium on muscle receptors. Hong Kong University Press, Hong Kong, pp 43–47

    Google Scholar 

  • Durkovic RG (1976) Aftereffects of static or dynamic fusimotor activation on primary afferent discharge. Exp Neurol 50:99–112

    Google Scholar 

  • Dutia MB (1980) Activation of cat muscle spindle primary, secondary and intermediate sensory endings by suxamethonium. J Physiol 304:315–330

    Google Scholar 

  • Eagles JP, Purple RL (1974) Afferent fibres with multiple encoder sites. Brain Res 77:187–193

    Google Scholar 

  • Eccles JC, Fatt P, Koketsu K (1954) Cholinergic and inhibitory synapses in a pathway from motor axon collaterals to motoneurones. J Physiol 126:524–562

    Google Scholar 

  • Eccles JC, Eccles RM. Lundberg A (1957a) Synaptic actions on motoneurones in relation to the two components of the group I muscle afferent volley. J Physiol 136:527–546

    Google Scholar 

  • Eccles JC, Eccles RM, Lundberg A (1957b) The convergence of monosynaptic excitatory afferents onto many different species of alpha motoneurones. J Physiol 137:22–50

    Google Scholar 

  • Eccles JC, Eccles RM, Iggo A, Lundberg A (1960) Electrophysiological studies on gamma motoneurones. Acta Physiol Scand 50:32–40

    Google Scholar 

  • Eccles RM, Lundberg A (1959) Synaptic actions in motoneurones by afferents which may evoke the flexion reflex. Arch Ital Biol 97:199–221

    Google Scholar 

  • Edström L, Kugelberg E (1968) Histochemical composition, distribution of fibres and fatiguability of single motor units. J Neurol Neurosurg Psychiatry 31:424–433

    Google Scholar 

  • Eklund G, von Euler C, Rutkowski S (1964) Spontaneous and reflex activity of intercostal gamma motoneurones. J Physiol 171:139–163

    Google Scholar 

  • Eldred E, Hagbarth K-E (1954) Facilitation and inhibition of gamma efferents by stimulation of certain skin areas. J Neurophysiol 17:59–65

    Google Scholar 

  • Eldred E, Granit R, Merton PA (1953) Supraspinal control of the muscle spindles and its significance. J Physiol 122:498–523

    Google Scholar 

  • Ellaway PH (1968) Antidromic inhibition of fusimotor neurones. J Physiol 198:39–40P

    Google Scholar 

  • Ellaway PH (1971) Recurrent inhibition of fusimotor neurones exhibiting background discharges in the decerebrate and the spinal cat. J Physiol 216:419–439

    Google Scholar 

  • Ellaway PH (1972) The variability in discharge of fusimotor neurones in the decerebrate cat. Exp Brain Res 14:105–117

    Google Scholar 

  • Ellaway PH (1976) Recurrent inhibition of gamma motoneurones. In: Shahani M (ed) The motor system: neurophysiology and muscle mechanisms, vol 4. Elsevier, Amsterdam, pp 119–126

    Google Scholar 

  • Ellaway PH, Murphy PR (1980) Autogenetic effects of muscle contraction on extensor gamma motoneurones in the cat. Exp Brain Res 38:305–312

    Google Scholar 

  • Ellaway PH, Murphy PR (1981) A comparison of the recurrent inhibition of α-and γ-motoneurones in the cat. J Physiol 315:43–58

    Google Scholar 

  • Ellaway PH, Trott J (1976) Reflex connections from muscle stretch receptors to their own fusimotor neurons. Prog Brain Res 44:113–122

    Google Scholar 

  • Ellaway PH, Trott JR (1978) Autogenetic reflex action onto gamma motoneurones by stretch of triceps surae in the decerebrate cat. J Physiol 276:49–66

    Google Scholar 

  • Ellaway PH, Emonet-Dénand F, Joffroy M, Laporte Y (1972) Lack of exclusively fusimotor α-axons in flexor and extensor leg muscles of the cat. J Neurophysiol 35:149–153

    Google Scholar 

  • Ellaway PH, Murphy PR, Trott JR (1979) Inhibition of gamma motoneurone discharge by contraction of the homonymous muscle in the decerebrated cat. J Physiol 291:425–441

    Google Scholar 

  • Ellaway PH, Murphy PR, Tripathi A (1982) Closely coupled excitation of γ-motoneurones by group III muscle afferents with low mechanical threshold in the cat. J Physiol 331:481–498

    Google Scholar 

  • Emonet-Dénand F, Laporte Y (1969) Frequencygrams of rabbit spindle primary endings elicited by stimulation of fusimotor fibres. J Physiol 201:673–684

    Google Scholar 

  • Emonet-Dénand F, Laporte Y (1974) Blocage neuromusculaire sélectif des jonctions extrafusales des axones squeletto-fusimoteurs produit par leur stimulation répétitive à fréquence élevée. C R Hebd Séances Acad Sci (III) 279:2083–2085

    Google Scholar 

  • Emonet-Dénand F, Laporte Y (1975) Proportion of muscle spindles supplies by skeletofusimotor axons (β-axons) in peroneus brevis muscle of the cat. J Neurophysiol 38:1390–1394

    Google Scholar 

  • Emonet-Dénand F, Laporte Y (1981) Muscle stretch as a way of detecting brief activation of bag1 fibres by dynamic axons. In: Taylor A, Prochazka A (eds) Muscle receptors and movement. MacMillan, London, pp 67–76

    Google Scholar 

  • Emonet-Dénand F, Laporte Y (1983) Observations on the effects on spindle primary endings of the stimulation at low frequency of dynamic β-axons. Brain Res 258:101–104

    Google Scholar 

  • Emonet-Dénand F, Laporte Y, Pagès B (1966) Fibres fusimotrices statiques et fibres fusimotrices dynamiques chez le lapin. Arch Ital Biol 104:195–213

    Google Scholar 

  • Emonet-Dénand F, Jankowska E, Laporte Y (1970) Skeleto-fusimotor fibres in the rabbit. J Physiol 210:669–680

    Google Scholar 

  • Emonet-Dénand F, Joffroy M, Laporte Y (1972) Fibres fusimotrices dont l'action sur la sensibilité phasique des terminaisons primaires dépend de leur fréquence de stimulation. C R Hebd Séances Acad Sci (III) 275:89–91

    Google Scholar 

  • Emonet-Dénand F, Jami L, Laporte Y (1975) Skeleto-fusimotor axons in hind-limb muscles of the cat. J Physiol 249:153–166

    Google Scholar 

  • Emonet-Dénand F, Hulliger M, Matthews PBC, Petit J (1977a) Factors affecting modulation in post-stimulus histograms on static fusimotor stimulation. Brain Res 134:180–184

    Google Scholar 

  • Emonet-Dénand F, Laporte Y, Matthews PBC, Petit J (1977b) On the subdivision of static and dynamic fusimotor actions on the primary ending of the cat muscle spindle. J Physiol 268:827–861

    Google Scholar 

  • Emonet-Dénand F, Jami L, Laporte Y (1980a) Histophysiological observations on the skeleto-fusimotor innervation of mammalian spindles. Prog. Clin Neurophysiol 8:1–11

    Google Scholar 

  • Emonet-Dénand F, Jami L, Laporte Y, Tankov N (1980b) Glycogen depletion of bag1 fibres elicited by stimulation of static γ-axons in cat peroneus brevis muscle spindles. J Physiol 302:311–321

    Google Scholar 

  • Emonet-Dénand F, Laporte Y, Tristant A (1980c) Effects of slow muscle stretch on the responses of primary and secondary endings to small amplitude periodic stretches in de-efferented soleus muscle spindles. Brain Res 191:551–554

    Google Scholar 

  • Evans MH (1963) Alterations in activity of gamma efferents during distension of the bladder of the cat. J Physiol 165:358–367

    Google Scholar 

  • Eyzaguirre C (1957) Functional organization of neuromuscular spindle in toad. J Neurophysiol 20:523–542

    Google Scholar 

  • Eyzaguirre C (1958) Modulation of sensory discharges by efferent spindle excitation. J Neurophysiol 21:465–480

    Google Scholar 

  • Fidone SJ, Preston JB (1969) Patterns of motor cortex control of flexor and extensor cat fusimotor neurons. J Neurophysiol 32:103–115

    Google Scholar 

  • Filippi GM, Grassi C, Passatore M (1983) The possible action of the cervical sympathetic nerves on intrafusal fibres of jaw muscle spindles in the rabbit. J Physiol 340:27P

    Google Scholar 

  • Fromm C, Noth J (1976) Reflex responses of gamma motoneurones to vibration of the muscle they innervate. J Physiol 256:117–136

    Google Scholar 

  • Fromm C, Haase J, Noth J (1974) Length-dependent autogenetic inhibition of extensor γ-motoneurones in the decerebrate cat. Pflügers Arch 346:251–262

    Google Scholar 

  • Fromm C, North J, Thilmann A (1976) Inhibition of extensor γ-motoneurones by antagonistic primary and secondary spindle afferents. Pflügers Arch 363:81–86

    Google Scholar 

  • Fulton JF, Pi-Suñer J (1928) A note concerning the probable function of various afferent end-organs in skeletal muscle. Am J Physiol 83:554–562

    Google Scholar 

  • Gilman S (1968) A crossed cerebellar influence on muscle spindle primaries. Brain Res 8:216–219

    Google Scholar 

  • Gilman S (1969) The mechanisms of cerebellar hypotonia. An experimental study in the monkey. Brain 92:621–638

    Google Scholar 

  • Gilman S, McDonald WI (1967) Cerebellar facilitation of muscle spindle activity. J Neurophysiol 30:1494–1512

    Google Scholar 

  • Gilman S, Lieberman JS, Copack P (1971a) A thalamic mechanism of postural control. Int J Neurol 8:260–275

    Google Scholar 

  • Gilman S, Marco LA, Ebel HC (1971b) Effects of medullary pyramidotomy in the monkey. II. Abnormalities of spindle afferent responses. Brain 94:515–530

    Google Scholar 

  • Gladden MH (1976) Structural features relative to the function of intrafusal muscle fibres in the cat. Prog Brain Res 44:51–59

    Google Scholar 

  • Gladden MH (1981) The activity of intrafusal muscle fibres during central stimulation in the cat. In: Taylor A, Prochazka A (eds) Muscle receptors and movement. MacMillan, London, pp 109–122

    Google Scholar 

  • Gladden MH, McWilliam PN (1977) The activity of intrafusal fibres during cortical stimulation in the cat. J Physiol 273:28–29P

    Google Scholar 

  • Goodwin GM, Luschei ES (1974) Effects of destroying spindle afferents from jaw muscles on mastrication in monkeys. J Neurophysiol 37:967–981

    Google Scholar 

  • Goodwin GM, Luschei ES (1975) Discharge of spindle afferents from jaw-closing muscles during chewing in alert monkeys. J Neurophysiol 38:560–571

    Google Scholar 

  • Goodwin GM, McCloskey DI, Matthews PBC (1972) The contribution of muscle afferents to kinaesthesia shown by vibration-induced illusions of movement and by the effects of paralysing joint afferents. Brain 95:705–748

    Google Scholar 

  • Goodwin GM, Hulliger M, Matthews PBC (1975) The effects of fusimotor stimulation during small amplitude stretching on the frequency-response of the primary ending of the mammalian muscle spindle. J Physiol 253:175–206

    Google Scholar 

  • Goodwin GM, Hulliger M, Matthews PBC (1976) Studies on muscle spindle primary endings with sinusoidal stretching. Prog Brain Res 44:89–98

    Google Scholar 

  • Goslow GE, Reinking RM, Stuart DG (1973) The cat step cycle. Hindlimb joint angles and muscle length during unrestrained locomotion. J Morphol 141:1–41

    Google Scholar 

  • Gottlieb S, Taylor A (1983) Interpretation of fusimotor activity in cat masseter nerve during reflex jaw movements. J Physiol 345:423–438

    Google Scholar 

  • Granit R (1955) Receptors and sensory perception. Yale University Press, New Haven

    Google Scholar 

  • Granit R (1970) The basis of motor control. Academic Press, London

    Google Scholar 

  • Granit R (1979) Interpretation of supraspinal effects on the gamma system. Prog Brain Res 50:147–154

    Google Scholar 

  • Granit R, Holmgren B (1955) Two pathways from brain stem to gamma ventral horn cells. Acta Physiol Scand 35:93–108

    Google Scholar 

  • Granit R, Kaada BR (1952) Influence of stimulation of central nervous structures on muscle spindles in cat. Acta Physiol Scand 27:130–160

    Google Scholar 

  • Granit R, Job C, Kaada BR (1952) Activation of muscle spindles in pinna reflex. Acta Physiol Scand 27:161–168

    Google Scholar 

  • Granit R, Holmgren B, Merton PA (1955) The two routes for excitation of muscle and their subservience to the cerebellum. J Physiol 130:213–224

    Google Scholar 

  • Granit R, Pascoe JE, Steg G (1957) The behaviour of tonic α-and γ-motoneurones during stimulation of recurrent collaterals. J Physiol 138:381–400

    Google Scholar 

  • Gray EG (1957) The spindle and extrafusal innervation of a frog muscle. Proc R Soc Lond (Biol) 146:416–430

    Google Scholar 

  • Gregory JE, Prochazka A, Proske U (1977) Responses of muscle spindles to stretch after a period of fusimotor activity compared in freely moving and anaesthetized cats. Neurosci Lett 4:67–72

    Google Scholar 

  • Grigg P (1975) Mechanical factors influencing response of joint afferent neurons from cat knee. J Neurophysiol 38:1473–1484

    Google Scholar 

  • Grigg P, Greenspan BJ (1977) Response of primate joint afferent neurons to mechanical stimulation of knee joint. J Neurophysiol 40:1–8

    Google Scholar 

  • Grigg P, Preston JB (1971) Baboon flexor and extensor fusimotor neurons and their modulation by motor cortex. J Neurophysiol 34:428–436

    Google Scholar 

  • Grillner S (1969a) The influence of DOPA on the static and dynamic fusimotor activity to the triceps surae of the spinal cat. Acta Physiol Scand 77:490–509

    Google Scholar 

  • Grillner S (1969b) Supraspinal and segmental control of static and dynamic γ-motoneurones in the cat. Acta Physiol Scand (Suppl) 327:1–34

    Google Scholar 

  • Grillner S (1976) Some aspects on the descending control of the spinal circuits generating locomotor movements. In: Herman RM, Grillner S, Stein PSG, Stuart DG (eds) Neural control of locomotion. Plenum, New York, pp 351–375

    Google Scholar 

  • Grillner S (1981) Control of locomotion in bipeds, tetrapods, and fish. In: Brookhart JM, Mountcastle VB, Brooks VB (eds) Motor control, part 2. American Physiological Society, Bethesda, pp 1179–1236 (Handbook of physiology, sect 1, vol 2)

    Google Scholar 

  • Grillner S, Hongo T, Lundberg A (1967) The effect of DOPA on the spinal cord. 7. Reflex activation of static γ-motoneurones from the flexor reflex afferents. Acta Physiol Scand 70:403–411

    Google Scholar 

  • Grillner S, Hongo T, Lund S (1969) Descending monosynaptic and reflex control of γ-motoneurones. Acta Physiol Scand 75:592–613

    Google Scholar 

  • Hagbarth K-E (1952) Excitatory and inhibitory skin areas for flexor and extensor motoneurones. Acta Physiol Scand (Suppl 94) 26:1–58

    Google Scholar 

  • Hagbarth K-E (1979) Exteroceptive, proprioceptive, and sympathetic activity recorded with microelectrodes from human peripheral nerves. Mayo Clin Proc 54:353–365

    Google Scholar 

  • Hagbarth K-E (1981) Fusimotor and stretch reflex functions studied in recordings from muscle spindle afferents in man. In: Taylor A, Prochazka A (eds) Muscle receptors and movement. MacMillan, London, pp 277–286

    Google Scholar 

  • Hagbarth K-E, Vallbo ÅB (1968) Discharge characteristics of human muscle afferents during muscle stretch and contraction. Exp Neurol 22:674–694

    Google Scholar 

  • Hagbarth K-E, Young RR (1979) Participation of the stretch reflex in human physiological tremor. Brain 102:509–526

    Google Scholar 

  • Hagbarth K-E, Wallin G, Burke D, Löfstedt L (1975a) Effects of the Jendrassik manoeuvre on muscle spindle activity in man. J Neurol Neurosurg Psysiatry 38:1143–1153

    Google Scholar 

  • Hagbarth K-E, Wallin G, Löfstedt L (1975b) Muscle spindle activity in man during voluntary fast alternating movements. J Neurol Neurosurg Psychiatry 38:625–635

    Google Scholar 

  • Hagbarth K-E, Wallin G, Löfstedt L, Aquilonius S-M (1975c) Muscle spindle activity in alternating tremor of parkinsonism and in clonus. J Neurol Neurosurg Psychiatry 38:636–641

    Google Scholar 

  • Hagbarth K-E, Hägglund JV, Wallin EU, Young RR (1981) Grouped spindle and electromyographic responses to abrupt wrist extension movements in man. J Physiol 312:81–96

    Google Scholar 

  • Harker DW, Jami L, Laporte Y, Petit J (1977) Fast-conducting skeletofusimotor axons supplying intrafusal chain fibres in the cat peroneus tertius muscle. J Neurophysiol 40:791–799

    Google Scholar 

  • Harriman DGF, Parker PL, Elliot BJ (1974) The histochemistry of human intrafusal muscle fibres. J Anat 119:205–206

    Google Scholar 

  • Harvey RJ, Matthews PBC (1961) The response of deefferented muscle spindle endings in the cat's soleus to slow extension of the muscle. J Physiol 157:170–192

    Google Scholar 

  • Hasan Z (1983) A model of spindle afferent response to muscle stretch. J Neurophysiol 49:989–1006

    Google Scholar 

  • Hasan Z, Houk JC (1975a) Analysis of response properties of deefferented mammalian spindle receptors based on frequency response. J Neurophysiol 38:663–672

    Google Scholar 

  • Hasan Z, Houk JC (1975b) Transition in sensitivity of spindle receptors that occurs when muscle is stretched more than a fraction of a millimeter. J Neurophysiol 38:673–689

    Google Scholar 

  • Henatsch HD, Manni E, Wilson JH, Dow RS (1964) Linked and independent responses of tonic α and γ hind-limb motoneurons to deep cerebellar stimulation. J Neurophysiol 27:172–192

    Google Scholar 

  • Henneman E, Mendell LM (1981) Functional organization of motoneuron pool and its inputs. In: Brookhart JM, Mountcastle VB, Brooks VB (eds) Motor control, part 1. American Physiological Society, Bethesda, pp 423–507 (Handbook of physiology, sect 1, vol 2)

    Google Scholar 

  • Henneman E, Somjen G, Carpenter DO (1965a) Functional significance of cell size in spinal motoneurons. J Neurophysiol 28:560–580

    Google Scholar 

  • Henneman E, Somjen G, Carpenter DO (1965b) Excitability and inhibitibility of motoneurons of different sizes. J Neurophysiol 28:599–620

    Google Scholar 

  • Hill DK (1968) Tension due to interaction between the sliding filaments in resting striated muscle. J Physiol 199:637–684

    Google Scholar 

  • Hnik P, Kucera J, Kidd GL (1970) Increased sensory outflow from muscles following tetanic stimulation of alpha motor fibres. Physiol Bohemoslov 19:49–54

    Google Scholar 

  • Hoffer JA, Loeb GE (1983) A technique for reversible fusimotor blockade during chronic recording from spindle afferents in walking cats. Exp Brain Res (Suppl) 7:272–279

    Google Scholar 

  • Hoffer JA, Loeb GE, Pratt CA (1981a) Single unit conduction velocities from averaged nerve cuff electrode records in freely moving cats. J Neurosci Methods 4:211–225

    Google Scholar 

  • Hoffer JA, O'Donovan MJ, Pratt CA, Loeb GE (1981b) Discharge patterns of hindlimb motoneurons during normal cat locomotion. Science 213:466–468

    Google Scholar 

  • Holm W, Padeken D, Schäfer SS (1981) Characteristic curves of the dynamic response of primary muscle spindle endings with and without gamma stimulation. Pflügers Arch 391:163–170

    Google Scholar 

  • Holmqvist B, Lundberg A (1961) Differential supraspinal control of synaptic actions evoked by volleys in the flexion reflex afferents in alpha motoneurones. Acta Physiol Scand (Suppl 186) 54:1–51

    Google Scholar 

  • Homma S (ed) (1976) Understanding the stretch reflex. Prog Brain Res 44

    Google Scholar 

  • Hongo T, Jankowska E, Lundberg A (1969) The rubrospinal tract. I. Effects on alpha motoneurones innervating hindlimb muscles of cats. Exp Brain Res 7:344–364

    Google Scholar 

  • Houk JC (1972) The phylogeny of muscular control configurations. In: Drischel H, Dettmar P (eds) Biocybernetics, vol IV. Jena: Fischer, pp 125–144

    Google Scholar 

  • Houk JC, Rymer WZ, Crago PE (1981) Dependence of dynamic response of spindle receptors on muscle length and velocity. J Neurophysiol 46:143–166

    Google Scholar 

  • Hulliger M (1976) Some quantitative studies on muscle receptors. Doctoral thesis, Oxford University

    Google Scholar 

  • Hulliger M (1979) The responses of primary spindle afferents to fusimotor stimulation at constant and abruptly changing rates. J Physiol 294:461–482

    Google Scholar 

  • Hulliger M (1981) Muscle spindle afferent units. Functional properties with possible significance in spasticity. In: Bauer HJ, Koella WP, Struppler A (eds) Therapie der Spastik. Verlag für angewandte Wissenschaften, München, pp 55–70

    Google Scholar 

  • Hulliger M, Noth J (1979) Static and dynamic fusimotor interaction and the possibility of multiple pace-makers operating in the cat muscle spindle. Brain Res 173:21–28

    Google Scholar 

  • Hulliger M, Prochazka A (1983) A new simulation method to deduce fusimotor activity from afferent discharge recorded in freely moving cats. J Neurosci Methods 8:197–204

    Google Scholar 

  • Hulliger M, Vallbo ÅB (1979a) The responses of muscle spindle afferents during voluntary tracking movements. Load-dependent servo assistance? Brain Res 166:401–404

    Google Scholar 

  • Hulliger M, Vallbo ÅB (1979b) The responses of muscle spindle afferents to small irregularities of voluntary movement in man. Neurosci Lett (Suppl) 3:98

    Google Scholar 

  • Hulliger M, Matthews PBC, Noth J (1977a) Static and dynamic fusimotor action on the response of Ia fibres to low-frequency sinusoidal stretching of widely ranging amplitude. J Physiol 267:811–838

    Google Scholar 

  • Hulliger M, Matthews PBC, Noth J (1977b) Effects of combining static and dynamic fusimotor stimulation on the response of the muscle spindle primary ending to sinusoidal stretching. J Physiol 267:839–856

    Google Scholar 

  • Hulliger M, Matthews PBC, Noth J (1977c) Alternation between occlusion and summation during combined fusimotor excitation of Ia afferents. J Physiol 268:27–28P

    Google Scholar 

  • Hulliger M, Nordh E, Thelin AE, Vallbo ÅB (1979) The responses of afferent fibres from the glabrous skin of the hand during voluntary finger movements in man. J Physiol 291:233–249

    Google Scholar 

  • Hulliger M, Nordh E, Vallbo ÅB (1982) The absence of position response in spindle afferent units from human finger muscles during accurate position holding. J Physiol 322:167–179

    Google Scholar 

  • Hulliger M, Baumann TK, Emonet-Dénand F (1983) Static γ-motoneurones activated at low stimulation rates and short muscle lengths may enhance Ia sensitivity to sinusoidal stretch. Proc Int Union Physiol Sci 15:86

    Google Scholar 

  • Hulliger M, Zangger P, Prochazka A, Appenteng K (1984) Fusimotor “Set” vs α-γ linkage in voluntary movement in cat. In: Struppler A, Weindl A (eds) Proceedings of the 7th international congress of electromyography. Springer, Berlin Heidelberg New York, pp 57–64

    Google Scholar 

  • Hultborn H (1976) Transmission in the pathway of reciprocal Ia inhibition to motoneurones and its control during the tonic stretch reflex. Prog Brain Res 44:235–255

    Google Scholar 

  • Hultborn H, Lindström S, Wigström H (1979) On the function of recurrent inhibition in the spinal cord. Exp Brain Res 37:399–403

    Google Scholar 

  • Hunt CC (1951) The reflex activity of mammalian small nerve fibres. J Physiol 115:456–469

    Google Scholar 

  • Hunt CC (1954) Relation of function to diameter in afferent fibres of muscle nerves. J Gen Physiol 38:117–131

    Google Scholar 

  • Hunt CC (1974) The physiology of muscle receptors. In: Hunt CC (ed) Muscle receptors. Springer, Berlin Heidelberg New York, pp 191–234 (Handbook of sensory physiology, vol 3, pt 2)

    Google Scholar 

  • Hunt CC, Kuffler SW (1951a) Further study of efferent small-nerve fibres to mammalian muscle spindles. Multiple spindle innervation and activity during contraction. J Physiol 113:283–297

    Google Scholar 

  • Hunt CC, Kuffler SW (1951b) Stretch receptor discharges during muscle contraction. J Physiol 113:298–315

    Google Scholar 

  • Hunt CC, Ottoson D (1976) Initial burst of primary endings of isolated mammalian muscle spindles. J Neurophysiol 39:324–330

    Google Scholar 

  • Hunt CC, Ottoson D (1977) Responses of primary and secondary endings of isolated mammalian muscle spindles to sinusoidal length changes. J Neurophysiol 40:1113–1120

    Google Scholar 

  • Hunt CC, Paintal AS (1958) Spinal reflex regulation of fusimotor neurones. J Physiol 143:195–212

    Google Scholar 

  • Hunt CC, Perl ER (1960) Spinal reflex mechanisms concerned with skeletal muscle. Physiol Rev 40:538–579

    Google Scholar 

  • Hunt CC, Wilkinson RS (1980) An analysis of receptor potential and tension of isolated cat muscle spindles in response to sinusoidal stretch. J Physiol 302:241–262

    Google Scholar 

  • Hunt CC, Jami L, Laporte Y (1982) Effects of stimulating the lumbar sympathetic trunk on cat hindlimb muscle spindles. Arch Ital Biol 120:371–384

    Google Scholar 

  • Hutton RS, Smith JL, Eldred E (1973) Postcontraction sensory discharge and its source. J Neurophysiol 36:1090–1103

    Google Scholar 

  • Hutton RS, Smith JL, Eldred E (1975) Persisting changes in sensory and motor activity of a muscle following its reflex activation. Pflügers Arch 353:327–336

    Google Scholar 

  • Hyde D, Scott JJA (1983) Responses of cat peroneus brevis muscle spindle afferents during recovery from nerve-crush injury. J Neurophysiol 50:344–357

    Google Scholar 

  • Iggo A (1961) Non-myelinated afferent fibres from mammalian skeletal muscle. J Physiol 155:52–53P

    Google Scholar 

  • Inoue H, Morimoto T, Kawamura Y (1981) Response characteristics and classification of muscle spindles of the masseter muscle in the cat. Exp Neurol 74:548–560

    Google Scholar 

  • Jami L, Petit J (1978) Fusimotor actions on sensitivity of spindle secondary endings to slow muscle stretch in cat peroneus tertius. J Neurophysiol 41:860–869

    Google Scholar 

  • Jami L, Petit J (1979) Dynamic and static responses of primary and secondary spindle endings of the cat peroneus tertius muscle. J Physiol 296:109P

    Google Scholar 

  • Jami L, Petit J (1981) Fusimotor actions on the sensitivity of spindle secondary endings. In: Taylor A, Prochazka A (eds) Muscle receptors and movement. MacMillan, London, pp 51–66

    Google Scholar 

  • Jami L, Lan-Couton D, Malmgren K, Petit J (1978) “Fast” and “slow” skeleto-fusimotor innervation in cat tenuissimus spindles: a study with the glycogen-depletion method. Acta Physiol Scand 103:284–298

    Google Scholar 

  • Jami L, Lan-Couton D, Malmgren K, Petit J (1979) Histophysiological observations on fast skeleto-fusimotor axons. Brain Res 164:53–59

    Google Scholar 

  • Jami L, Murthy KSK, Petit J (1982) A quantitative study of skeletofusimotor innervation in the cat peroneus tertius muscle. J Physiol 325:125–144

    Google Scholar 

  • Jankowska E (1979) New observations on neuronal organization of reflexes from tendon organ afferents and their relation to reflexes evoked from muscle spindle afferents. Prog Brain Res 50:29–36

    Google Scholar 

  • Jankowska E, Jukes MGM, Lund S, Lundberg A (1967a) The effect of DOPA on the spinal cord. 5. Reciprocal organization of pathways transmitting excitatory action to alpha motoneurones of flexors and extensors. Acta Physiol Scand 70:369–388

    Google Scholar 

  • Jankowska E, Jukes MGM, Lund S, Lundberg A (1967b) The effect of DOPA on the spinal cord. 6. Half-centre organization of interneurones transmitting effects from the flexor reflex afferents. Acta Physiol Scand 70:389–402

    Google Scholar 

  • Jansen JKS, Matthews PBC (1962) The central control of the dynamic response of muscle spindle receptors. J Physiol 161:357–378

    Google Scholar 

  • Jerge CR (1963) Organization and function of the trigeminal mesencephalic nucleus. J Neurophysiol 26:379–392

    Google Scholar 

  • Johansson H (1981) Reflex control of γ-motoneurones. Umeå University medical dissertations, new series no 70

    Google Scholar 

  • Kato M, Fukushima K (1974) Effect of differential blocking of motor axons on antidromic activation of Renshaw cells in the cat. Exp Brain Res 20:135–143

    Google Scholar 

  • Kato M, Takamura H, Fujimori B (1964) Studies on effects of pyramid stimulation upon flexor and extensor motoneurones and gamma motoneurones. Jpn J Physiol 14:34–44

    Google Scholar 

  • Katz B (1949) Efferent regulation of muscle spindle in the frog. J Exp Biol 26:201–217

    Google Scholar 

  • Kennedy WR (1970) Innervation of normal human muscle spindles. Neurology (Minneap) 20:463–475

    Google Scholar 

  • Kennedy WR, Poppele RE, Quick DC (1980) Mammalian muscle spindles. In: Sumner AJ (ed) The physiology of peripheral nerve disease. Saunders, Philadelphia, pp 74–132

    Google Scholar 

  • Kidd GL (1964) A persistent excitation of muscle-spindle receptor endings in the rat following ventral root filament stimulation. J Physiol 170:39–52

    Google Scholar 

  • Kidd GL, Kucera J, Vaillant CH (1971) The influence of the interstitial concentration of K+ on the activity of muscle receptors. Physiol Bohemoslov 20:95–108

    Google Scholar 

  • Kirkwood PA, Sears TA (1974) Monosynaptic excitation of motoneurones from secondary endings of muscle spindles. Nature 252:243–244

    Google Scholar 

  • Kirkwood PA, Sears TA (1975) Monosynaptic excitation of motoneurones from muscle spindle secondary endings of intercostal and triceps surae muscles in the cat. J Physiol 245:64–66P

    Google Scholar 

  • Kniffki KD, Mense S, Schmidt RF (1978) Responses of group IV afferent units from skeletal muscle to stretch, contraction and chemical stimulation. Exp Brain Res 31:511–522

    Google Scholar 

  • Kniffki KD, Schomburg ED, Steffens H (1981) Effects from fine muscle and cutaneous afferents on spinal locomotion in cats. J Physiol 319:543–554

    Google Scholar 

  • Kobayashi Y, Oshima K, Tasaki I (1952) Analysis of afferent and efferent systems in the muscle nerve of the toad and cat. J Physiol 117:152–171

    Google Scholar 

  • Koeze TH (1968) The response to stretch of muscle spindle afferents of baboon's tibialis anticus and the effect of fusimotor stimulation. J Physiol 197:107–121

    Google Scholar 

  • Koeze TH (1973a) Muscle spindle afferent studies in the baboon. J Physiol 229:297–317

    Google Scholar 

  • Koeze TH (1973b) Thresholds of cortical activation of baboon α-and γ-motoneurones during halothane anaesthesia. J Physiol 229:319–337

    Google Scholar 

  • Kornhauser D, Bromberg MB, Gilman S (1982) Effects of lesions of fastigial nucleus on static and dynamic responses of muscle spindle primary afferents in the cat. J Neurophysiol 47:977–986

    Google Scholar 

  • Kozeka K, Ontell M (1981) The three-dimensional cytoarchitecture of developing murine muscle spindles. Dev Biol 87:133–147

    Google Scholar 

  • Kubota K, Masegi T (1977) Muscle spindle supply to the human jaw muscle. J Dent Res 56:901–910

    Google Scholar 

  • Kucera J (1977) Histochemistry of intrafusal muscle fibers outside the spindle capsule. Am J Anat 148:427–432

    Google Scholar 

  • Kucera J (1980a) Motor innervation of the cat muscle spindle studied by the cholinesterase technique. Histochemistry 67:291–309

    Google Scholar 

  • Kucera J (1980b) Histochemical study of long nuclear chain fibers in the cat muscle spindle. Anat Rec 198:567–580

    Google Scholar 

  • Kucera J (1980c) Motor nerve terminals of cat nuclear chain fibers studied by the cholinesterase technique. Neuroscience 5:403–411

    Google Scholar 

  • Kucera J (1981a) The occurrence of “mixed” nuclear bag intrafusal fibers in the cat muscle spindle. Histochemistry 72:123–131

    Google Scholar 

  • Kucera J (1981b) Histochemical profiles of cat intrafusal muscle fibers and their motor innervation. Histochemistry 73:397–418

    Google Scholar 

  • Kucera J (1982a) Morphometric studies on tenuissimus muscle spindles in the cat. J Morphol 171:137–150

    Google Scholar 

  • Kucera J (1982b) A study of motor nerve terminals on cat nuclear bag1 intrafusal muscle fibers using the ChE staining technique. Anat Rec 202:407–418

    Google Scholar 

  • Kucera J (1982c) The topography of long nuclear chain intrafusal fibers in the cat muscle spindle. Histochemistry 74:183–197

    Google Scholar 

  • Kucera J (1982d) Appearance of sensory nerve terminals in cat muscle spindles stained for NADH-tetrazolium reductase. Histochemistry 74:493–503

    Google Scholar 

  • Kucera J (1982e) A study of sensory innervation to long nuclear chain intrafusal fibers in the cat muscle spindle. Histochemistry 75:113–121

    Google Scholar 

  • Kucera J (1982f) One-bag-fiber muscle spindles in tenuissimus muscles of the cat. Histochemistry 76:315–328

    Google Scholar 

  • Kucera J (1982g) Histological study on an unusual cat muscle spindle deficient in motor innervation. Anat Embryol (Berl) 165:39–49

    Google Scholar 

  • Kucera J, Dorovini-Zis K (1979) Types of human intrafusal muscle fibers. Muscle Nerve 2:437–451

    Google Scholar 

  • Kucera J, Hughes R (1983) Histological study of motor innervation to long nuclear chain intrafusal fibers in the muscle spindle of the cat. Cell Tissue Res 228:535–547

    Google Scholar 

  • Kuffler SW, Hunt CC (1952) The mammalian small-nerve fibres: a system for efferent nervous regulation of muscle spindle discharge. Res Publ Assoc Res Nerv Ment Dis 30:24–47

    Google Scholar 

  • Kuffler SW, Vaughan-Williams EM (1953) Properties of the slow skeletal muscle fibres of the frog. J Physiol 121:318–340

    Google Scholar 

  • Kuffler SW, Hunt CC, Quilliam JP (1951) Function of medullated small-nerve fibres in mammalian ventral roots: efferent muscle spindle innervation. J Neurophysiol 14:29–54

    Google Scholar 

  • Landon DN (1972) The fine structure of the equatorial regions of developing muscle spindles in the rat. J Neurocytol 1:189–210

    Google Scholar 

  • Lännergren J (1971) The effect of low-level activation on the mechanical properties of isolated frog muscle fibres. J Gen Physiol 58:145–162

    Google Scholar 

  • Laporte Y (1979) Innervation of cat muscle spindles by fast-conducting skeleto-fusimotor fibres. In: Asanuma H, Wilson VJ (eds) Integration in the nervous system. Igaku-Shoin, Tokyo, pp 3–12

    Google Scholar 

  • Laporte Y, Emonet-Dénand F (1973) Evidence for common innervation of bag and chain muscle fibres in cat spindles. In: Stein RB, Pearson KG, Smith RS, Redford JB (eds) Control of posture and locomotion. Plenum, New York, pp 119–126

    Google Scholar 

  • Laporte Y, Emonet-Dénand F (1976) The skeleto-fusimotor innervation of cat muscle spindle. Prog Brain Res 44:99–106

    Google Scholar 

  • Laporte Y, Emonet-Dénand F, Jami L (1981) The skeletofusimotor or β-innervation of mammalian muscle spindles. TINS 4:97–99

    Google Scholar 

  • Larson CR, Smith A, Luschei ES (1981) Discharge characteristics and stretch sensitivity of jaw muscle afferents in the monkey during controlled isometric bites. J Neurophysiol 46:130–142

    Google Scholar 

  • Larson CR, Finocchio DV, Smith A, Luschei ES (1983) Jaw muscle afferent firing during an isotonic jaw-positioning task in the monkey. J Neurophysiol 50:61–73

    Google Scholar 

  • Laursen AM, Wiesendanger M (1966) Pyramidal effect on alpha and gamma motoneurons. Acta Physiol Scand 67:165–172

    Google Scholar 

  • Leksell L (1945) The action potential and excitatory effects of the small ventral root fibres to skeletal muscle. Acta Physiol Scand (Suppl 31) 10:1–84

    Google Scholar 

  • Lennerstrand G (1968a) Position and velocity sensitivity of muscle spindles in the cat. I. Primary and secondary endings deprived of fusimotor activation. Acta Physiol Scand 73:281–299

    Google Scholar 

  • Lennerstrand G (1968b) Position and velocity sensitivity of muscle spindles in the cat. IV. Interaction between two fusimotor fibres converging on the same spindle ending. Acta Physiol Scand 74:257–273

    Google Scholar 

  • Lennerstrand G, Thoden U (1968a) Position and velocity sensitivity of muscle spindles in the cat. II. Dynamic fusimotor single-fibre activation of primary endings. Acta Physiol Scand 74:16–29

    Google Scholar 

  • Lennerstrand G, Thoden U (1968b) Position and velocity sensitivity of muscle spindles in the cat. III. Static fusimotor single-fibre activation of primary and secondary endings. Acta Physiol Scand 74:30–49

    Google Scholar 

  • Lennerstrand G, Thoden U (1968c) Muscle spindle responses to concomitant variations in length and in fusimotor activation. Acta Physiol Scand 74:153–165

    Google Scholar 

  • Lewis DM, Proske U (1972) The effect of muscle length and rate of fusimotor stimulation on the frequency of discharge in primary endings from muscle spindles in the cat. J Physiol 222:511–535

    Google Scholar 

  • Lewis MMcD, Prochazka A, Sontag KH, Wand P (1979a) Discharge rates of muscle afferents during voluntary movements of different speeds. Prog Brain Res 50:155–162

    Google Scholar 

  • Lewis MMcD, Prochazka A, Sontag KH, Wand P (1979b) Efferent and afferent responses during falling and landing in cat. Prog Brain Res 50:423–428

    Google Scholar 

  • Lloyd DPC, Chang HT (1948) Afferent fibres in muscle nerves. J Neurophysiol 11:199–208

    Google Scholar 

  • Loeb GE, Duysens J (1979) Activity patterns of individual hindlimb primary and secondary spindle afferents during normal movements in unrestrained cats. J Neurophysiol 42:420–440

    Google Scholar 

  • Loeb GE, Hoffer JA (1981) Muscle spindle function during normal and perturbed locomotion in cats. In: Taylor A, Prochazka A (eds) Muscle receptors and movement. MacMillan, London, pp 219–228

    Google Scholar 

  • Lund JP, Richmond FJR, Touloumis C, Patry Y, Lamarre Y (1978) The distribution of Golgi tendon organs and muscle spindles in masseter and temporalis muscles in the cat. Neuroscience 3:259–270

    Google Scholar 

  • Lund JP, Smith AM, Sessle BJ, Murakami T (1979) Activity of trigeminal α-and γ-motoneurons and muscle afferents during performance of a biting task. J Neurophysiol 42:710–725

    Google Scholar 

  • Lundberg A (1979a) Integration in a propriospinal motor centre controlling the forelimb in the cat. In: Asanuma H, Wilson VJ (eds) Integration in the nervous system. Igaku-Shoin, Tokyo, pp 47–65

    Google Scholar 

  • Lundberg A (1979b) Multisensory control of spinal reflex pathways. Prog Brain Res 50:11–28

    Google Scholar 

  • Lundberg A, Voorhoeve PE (1962) Effects from the pyramidal tract on spinal reflex arcs. Acta Physiol Scand 56:201–219

    Google Scholar 

  • Luschei ES, Goldberg LJ (1981) Neural mechanisms of mandibular control: mastication and voluntary biting. In: Brookhart JM, Mountcastle VB, Brooks VB (eds) Motor control, part 2. American Physiological Society, Bethesda, pp 1237–1274 (Handbook of physiology, sect 1, vol 2)

    Google Scholar 

  • Matsunami K, Kubota K (1972) Muscle afferents of trigeminal mesencephalic tract nucleus and mastication in chronic monkeys. Jpn J Physiol 22:545–555

    Google Scholar 

  • Matthews BHC (1931) The response of a muscle spindle during active contraction of a muscle. J Physiol 72:153–174

    Google Scholar 

  • Matthews BHC (1933) Nerve endings in mammalian muscle. J Physiol 78:1–53

    Google Scholar 

  • Matthews PBC (1962) The differentiation of two types of fusimotor fibre by their effects on the dynamic response of muscle spindle primary endings. Q J Exp Physiol 47:324–333

    Google Scholar 

  • Matthews PBC (1963) The response of deefferented muscle spindle receptors to stretching at different velocities. J Physiol 168:660–678

    Google Scholar 

  • Matthews PBC (1964) Muscle spindles and their motor control. Physiol Rev 44:219–288

    Google Scholar 

  • Matthews PBC (1969) Evidence that the secondary as well as the primary endings of the muscle spindles may be responsible for the tonic stretch reflex of the decerebrate cat. J Physiol 204:365–393

    Google Scholar 

  • Matthews PBC (1972) Mammalian muscle receptors and their central action. Arnold, London

    Google Scholar 

  • Matthews PBC (1981a) Evolving views on the internal operation and functional role of the muscle spindle. J Physiol 320:1–30

    Google Scholar 

  • Matthews PBC (1981b) Muscle spindles: their messages and their fusimotor supply. In: Brookhart JM, Mountcastle VB, Brooks VB (eds) Motor control, part 1. American Physiological Society, Bethesda, pp 189–228 (Handbook of physiology, sect 1, vol 2)

    Google Scholar 

  • Matthews PBC (1981c) Proprioceptors and the regulation of movement. In: Towe AL, Luschei ES (eds) Motor coordination. Plenum, New York, pp 93–137 (Handbook of behavioral neurobiology, vol 5)

    Google Scholar 

  • Matthews PBC (1982) Where does Sherrington's “muscular sense” originate? Muscles, joints, corollary discharges? Annu Rev Neurosci 5:189–218

    Google Scholar 

  • Matthews PBC, Stein RB (1969a) The sensitivity of muscle spindle afferents to small sinusoidal changes of length. J Physiol 200:723–743

    Google Scholar 

  • Matthews PBC, Stein RB (1969b) The regularity of primary and secondary muscle spindle afferent discharges. J Physiol 202:59–82

    Google Scholar 

  • Matthews PBC, Watson JDG (1981) Action of vibration on the response of cat muscle spindle Ia afferents to low-frequency sinusoidal stretching. J Physiol 317:365–381

    Google Scholar 

  • Matthews PBC, Westbury DR (1965) Some effects of fast and slow motor fibres on muscle spindles of the frog. J Physiol 178:178–192

    Google Scholar 

  • May O, Horsley V (1910) The mesencephalic root of the fifth nerve. Brain 33:175–203

    Google Scholar 

  • McCloskey DI (1978) Kinesthetic sensibility. Physiol Rev 58:763–820

    Google Scholar 

  • McCloskey DI (1981) Corollary discharges: motor commands and perception. In: Brookhart JM, Mountcastle VB, Brooks VB (eds) Motor control, part 2. American Physiological Society, Bethesda, pp 1415–1447 (Handbook of physiology, sect 1, vol 2)

    Google Scholar 

  • McIntyre AK, Proske U, Tracey DJ (1978) Fusimotor responses to volleys in joint and interosseus afferents in the cat's hindlimb. Neurosci Lett 10:287–292

    Google Scholar 

  • McKeon B, Burke D (1981) Component of muscle spindle discharge related to arterial pulse. J Neurophysiol 46:788–796

    Google Scholar 

  • McKeon B, Burke D (1983) Muscle spindle discharge in response to contraction of single motor units. J Neurophysiol 49:291–302

    Google Scholar 

  • McWilliam PN (1975) The incidence and properties of beta axons to muscle spindles in the cat hindlimb. Q J Exp Physiol 60:25–36

    Google Scholar 

  • Mense S (1977) Nervous outflow from skeletal muscle following chemical noxious stimulation. J Physiol 267:75–88

    Google Scholar 

  • Mense S, Stahnke M (1978) Discharges in muscular group III and IV afferents during contractions of the cat's triceps surae muscle. Pflügers Arch 373:69

    Google Scholar 

  • Mense S, Stahnke M (1983) Responses in muscle afferent fibres of slow conduction velocity to contractions and ischaemia in the cat. J Physiol 342:383–397

    Google Scholar 

  • Merton PA (1951) The silent period in a muscle of the human hand. J Physiol 114: 183–198

    Google Scholar 

  • Merton PA (1953) Speculations on the servo-control of movement. In: Malcolm JL, Gray JAB, Wolstenholme GEW (eds) The spinal cord. Churchill, London, pp 247–255

    Google Scholar 

  • Meyer-Lohmann J, Riebold W, Robrecht D (1974) Mechanical influence of the extrafusal muscle on the static behaviour of deafferented primary muscle spindle endings in cat. Pflügers Arch 352:267–278

    Google Scholar 

  • Milburn A (1973) The early development of muscle spindles in the rat. J Cell Sci 12:175–195

    Google Scholar 

  • Morimoto T, Inoue H, Kawamura Y (1982) Diameter spectra of sensory and motor fibres in nerves to jaw-closing and jaw-opening muscles in the cat. Jpn J Physiol 32:171–182

    Google Scholar 

  • Mortimer EM, Akert K (1961) Cortical control and representation of fusimotor neurons. Am J Phys Med 40:228–248

    Google Scholar 

  • Murphy PR (1981) The recruitment order of γ-motoneurones in the decerebrate rabbit. J Physiol 315:59–67

    Google Scholar 

  • Murthy KSK (1978) Vertebrate fusimotor neurones and their influences on motor behaviour. Prog Neurobiol 11:249–307

    Google Scholar 

  • Murthy KSK (1983) Physiological identification of static β-axons in primate muscle. Exp Brain Res 52:6–8

    Google Scholar 

  • Murthy KSK, Letbetter WD, Eidelberg E, Cameron WE, Petit J (1982) Histochemical evidence for the existence of skeletomotor (β) innervation in the primate. Exp Brain Res 46:186–190

    Google Scholar 

  • Newsom Davis J (1975) The response to stretch of human intercostal muscle spindles studied in vitro. J Physiol 249:561–579

    Google Scholar 

  • Nordh E, Hulliger M, Vallbo ÅB (1983) The variability of inter-spike intervals of human spindle afferents in relaxed muscles. Brain Res 271:89–99

    Google Scholar 

  • Noth J (1971) Recurrente Hemmung der Extensor-Fusimotoneurone? Pflügers Arch 329:23–33

    Google Scholar 

  • Noth J (1981) Autogenetic and antagonistic group II effects on extensor gamma motoneurons of the decerebrate cat. In: Taylor A, Prochazka A (eds) Muscle receptors and movement. MacMillan, London, pp 207–214

    Google Scholar 

  • Noth J (1983) Autogenetic inhibition of extensor γ-motoneurones revealed by electrical stimulation of group I fibres. J Physiol 342:51–65

    Google Scholar 

  • Noth J, Thilmann A (1980) Autogenetic excitation of extensor γ-motoneurones by group II muscle afferents in the cat. Neurosci Lett 17:23–26

    Google Scholar 

  • Ovalle WK, Smith RS (1972) Histochemical identification of three types of intrafusal muscle fibres in the cat and monkey based on the myosin ATPase reaction. Can J Physiol Pharmacol 50:195–202

    Google Scholar 

  • Paintal AS (1960) Functional analysis of group III afferent fibres of mammalian muscles. J Physiol 152:250–270

    Google Scholar 

  • Passatore M, Filippi GM (1981) On whether there is a direct sympathetic influence on jaw muscle spindles. Brain Res 219:162–165

    Google Scholar 

  • Passatore M, Filippi GM (1982) A dual effect of sympathetic nerve stimulation on jaw muscle spindles. J Auton Nerv Syst 6:347–361

    Google Scholar 

  • Perret C, Berthoz A (1973) Evidence of static and dynamic fusimotor actions on the spindle response to sinusoidal stretch during locomotor activities in the cat. Exp Brain Res 18:178–188

    Google Scholar 

  • Perret C, Buser P (1972) Static and dynamic fusimotor activity during locomotor movements in the cat. Brain Res 40:165–169

    Google Scholar 

  • Petit J, Cameron WE, Murthy KSK, Barone LA (1983) Patterns of fusimotor innervation by γ-efferents in cat peroneus tertius. Exp Brain Res 51:146–152

    Google Scholar 

  • Phillips CG (1969) The Ferrier Lecture, 1968. Motor apparatus of the baboon's hand. Proc R Soc Lond (Biol) 173:141–174

    Google Scholar 

  • Poppele RE (1973) Systems approach to the study of muscle spindles. In: Stein RB, Pearson KG, Smith RS, Redford JB (eds) Control of posture and locomotion. Plenum, New York, pp 127–146

    Google Scholar 

  • Poppele RE (1981) An analysis of muscle spindle behavior using randomly applied stretches. Neuroscience 6:1157–1165

    Google Scholar 

  • Poppele RE, Bowman RJ (1970) Quantitative description of linear behavior of mammalian muscle spindle. J Neurophysiol 33:59–72

    Google Scholar 

  • Poppele RE, Kennedy WR (1974) Comparison between behaviour of human and cat muscle spindles recorded in vitro. Brain Res 75:316–319

    Google Scholar 

  • Poppele RE, Quick DC (1981) Stretch-induced contraction of intrafusal muscle in cat muscle spindles. J Neurosci 1:1069–1074

    Google Scholar 

  • Poppele RE, Kennedy WR, Quick DC (1979) A determination of static mechanical properties of intrafusal muscle in isolated cat muscle spindles. Neuroscience 4:401–411

    Google Scholar 

  • Post EM, Rymer WZ, Hasan Z (1980) Relation between intrafusal and extrafusal activity in triceps surae muscles of the decerebrate cat: evidence for β-action. J Neurophysiol 44:383–404

    Google Scholar 

  • Pringle JWS (1949) The excitation and contraction of the flight muscles of insects. J Physiol 108:226–232

    Google Scholar 

  • Pringle JWS (1978) Stretch activation of muscle: function and mechanisms. Proc R Soc Lond (Biol) 201:107–130

    Google Scholar 

  • Prochazka A (1981) Muscle spindle function during normal movement. Int Rev Physiol 5:47–90

    Google Scholar 

  • Prochazka A, Hulliger M (1983) Muscle afferent function and its significance for motor control mechanisms during voluntary movements in cat, monkey and man. In: Desmedt JE (ed) Motor control mechanisms in health and disease. Raven, New York, pp 93–132

    Google Scholar 

  • Prochazka A, Wand P (1981) Independence of fusimotor and skeletomotor systems during voluntary movement. In: Taylor A, Prochazka A (eds) Muscle receptors and movement. MacMillan, London, pp 229–244

    Google Scholar 

  • Prochazka A, Westerman RA, Ziccone SP (1976) Discharges of single hindlimb afferents in freely moving cat. J Neurophysiol 39:1090–1104

    Google Scholar 

  • Prochazka A, Westerman RA, Ziccone SP (1977) Ia afferent activity during a variety of voluntary movements in the cat. J Physiol 268:423–448

    Google Scholar 

  • Prochazka A, Stephens JA, Wand P (1979) Muscle spindle discharge in normal and obstructed movements. J Physiol 287:57–66

    Google Scholar 

  • Proske U (1975) Stretch-evoked potentiation of responses of muscle spindles in the cat. Brain Res 88:378–383

    Google Scholar 

  • Proske U, Lewis DM (1972) The effects of muscle stretch and vibration on fusimotor activity in the lightly anaesthetized cat. Brain Res 46:55–69

    Google Scholar 

  • Quick DC, Kennedy WR, Donaldson L (1979) Dimensions of myelinated nerve fibres near the motor and sensory terminals in cat tenuissimus muscles. Neuroscience 4:1089–1096

    Google Scholar 

  • Quick DC, Kennedy WR, Poppele RE (1980) Anatomical evidence of multiple sources of action potentials in the afferent fibres of muscle spindles. Neuroscience 5:109–115

    Google Scholar 

  • Rack PMH, Westbury DR (1966) The effects of suxamethonium and acetylcholine on the behaviour of cat muscle spindles during dynamic stretching, and during fusimotor stimulation. J Physiol 186:698–713

    Google Scholar 

  • Rakhawy MT, Shehata SH, Badawy ZH (1971) The proprioceptive innervation of the lateral pterygoid muscle in man and some other mammals. Acta Anat (Basel) 79:581–598

    Google Scholar 

  • Renshaw B (1941) Influence of discharge of motoneurons upon excitation of neighbouring motoneurons. J Neurophysiol 4:167–183

    Google Scholar 

  • Renshaw B (1946) Central effects of centripetal impulses in axons of spinal ventral roots. J Neurophysiol 9:191–204

    Google Scholar 

  • Rexed B, Therman PO (1948) Calibre spectra of motor and sensory nerve fibres to flexor and extensor muscles. J Neurophysiol 11:133–139

    Google Scholar 

  • Richmond FJR, Abrahams VC (1975) Morphology and distribution of muscle spindles in dorsal muscles of the cat neck. J Neurophysiol 38:1322–1339

    Google Scholar 

  • Richmond FJR, Abrahams VC (1979a) Physiological properties of muscle spindles in dorsal neck muscles of the cat. J Neurophysiol 42:604–617

    Google Scholar 

  • Richmond FJR, Abrahams VC (1979b) What are the proprioceptors of the neck? Progr Brain Res 50:245–254

    Google Scholar 

  • Richmond FJR, Bakker DA (1982) Anatomical organization and sensory receptor content of soft tissues surrounding upper cervical vertebrae in the cat. J Neurophysiol 48:49–61

    Google Scholar 

  • Richmond FJR, Anstee GCB, Sherwin EA, Abrahams VC (1976) Motor and sensory fibres of neck muscle nerves in the cat. Can J Physiol Pharmacol 54:294–304

    Google Scholar 

  • Roll JP, Vedel JP (1982) Kinaesthetic role of muscle afferents in man, studied by tendon vibration and microneurography. Exp Brain Res 47:177–190

    Google Scholar 

  • Rosenthal NP, McKean TA, Roberts WJ, Terzuolo CA (1970) Frequency analysis of stretch reflex and its main subsystems in triceps surae muscles of the cat. J Neurophysiol 33:713–749

    Google Scholar 

  • Rossi G (1927) Asimmetrie toniche posturali, ed asimmetrie motore. Arch Fisiol 25:146–157

    Google Scholar 

  • Ruffini A (1897) Observations on sensory nerve endings in voluntary muscles. Brain 20:368–374

    Google Scholar 

  • Ruffini A (1898) On the minute anatomy of the neuromuscular spindles of the cat, and on their physiological significance. J Physiol 23:190–208

    Google Scholar 

  • Saito M, Tomonaga M, Hirayama K, Narabayashi H (1977) Histochemical study of normal human muscle spindle. Histochemical classification of intrafusal muscle fibres and intrafusal nerve endings. J Neurol 216:79–89

    Google Scholar 

  • Sato H (1981) Fusimotor modulation by spinal and skin temperature changes and its significance in cold shivering. Exp Neurol 74:21–32

    Google Scholar 

  • Sato H (1983) Effects of skin cooling and warming on stretch responses of the muscle spindle primary and secondary afferent fibres from the cat's tibialis anterior. Exp Neurol 81:446–458

    Google Scholar 

  • Sato H, Hasegawa Y (1977) Reflex changes in discharge activities of gamma efferents to varying skin temperatures in cats. Pflügers Arch 372:195–201

    Google Scholar 

  • Schäfer SS (1973) The characteristic curves of the dynamic response of primary muscle spindle endings in the absence and presence of stimulation of fusimotor fibres. Brain Res 59:395–399

    Google Scholar 

  • Schäfer SS (1974) The discharge frequencies of primary muscle spindle endings during simultaneous stimulation of two fusimotor filaments. Pflügers Arch 350:359–372

    Google Scholar 

  • Schäfer SS, Schäfer S (1973) The behaviour of the proprioceptors of the muscle and the innervation of the fusimotor system during cold shivering. Exp Brain Res 17:364–380

    Google Scholar 

  • Schieber MH, Thach WT (1980) Alpha-gamma dissociation during slow tracking movements of the monkey's wrist: preliminary evidence from spinal ganglion recording. Brain Res 202:213–216

    Google Scholar 

  • Schmidt RF (1978) Fundamentals of neurophysiology, 2nd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Schmidt RF, Kniffki KD, Schomburg ED (1981) Der Einfluß kleinkalibriger Muskelafferenzen auf den Muskeltonus. In: Bauer HJ, Koella WP, Struppler A (eds) Therapie der Spastik. Verlag für angewandte Wissenschaften, München, pp 71–86

    Google Scholar 

  • Sears TA (1963) Activity of fusimotor fibres innervating muscle spindles in the intercostal muscles of the cat. Nature 197:1013–1014

    Google Scholar 

  • Sears TA (1964) Efferent discharges in alpha-and fusimotor fibres of intercostal nerves of the cat. J Physiol 174:295–315

    Google Scholar 

  • Sears TA (1973) Servo control of the intercostal muscles. In: Desmedt JE (ed) New developments in electromyography and clinical neurophysiology, vol 3. Karger, Basel, pp 404–417

    Google Scholar 

  • Severin FV (1970) The role of the gamma motor system in the activation of the extensor alpha motoneurones during controlled locomotion. Biophysics 15:1138–1145

    Google Scholar 

  • Severin FV, Orlovsky GN, Shik ML (1967) Work of the muscle spindle receptors during controlled locomotion. Biophysics 12:575–586

    Google Scholar 

  • Sherrington CS (1894) On the anatomical constitution of nerves of skeletal muscles: with remarks on recurrent fibres in the ventral spinal nerve-root. J Physiol 17:211–258

    Google Scholar 

  • Shimazu H, Hongo T, Kubota K (1962a) Two types of central influences on gamma motor system. J Neurophysiol 25:309–323

    Google Scholar 

  • Shimazu H, Hongo T, Kubota K (1962b) Nature of central regulation of muscle spindle activity. In: Barker D (ed) Symposium on muscle receptors. Hong Kong University Press, Hong Kong, pp 49–57

    Google Scholar 

  • Sjöström A, Zangger P (1975) α-γ Linkage in the spinal generator for locomotion of the cat. Acta Physiol Scand 94:130–132

    Google Scholar 

  • Sjöström A, Zangger P (1976) Muscle spindle control during locomotor movements generated by the deafferented spinal cord. Acta Physiol Scand 97:281–291

    Google Scholar 

  • Smith JL, Hutten RS, Eldred E (1974) Postcontraction changes in sensitivity of muscle afferents to static and dynamic stretch. Brain Res 78:193–202

    Google Scholar 

  • Smith RD, Marcarian HQ, Niemer WT (1968) Direct projections from the masseteric nerve to the mesencephalic nucleus. J Comp Neurol 133:495–502

    Google Scholar 

  • Smith RS, Ovalle WK (1972) The structure and function of intrafusal muscle fibres. Muscle Biol 1:147–227

    Google Scholar 

  • Stauffer EK, Watt DGD, Taylor A, Reinking RM, Stuart DG (1976) Analysis of muscle receptor connections by spike-triggered averaging. 2. Spindle group II afferents. J Neurophysiol 39:1393–1402

    Google Scholar 

  • Stein RB (1974) Peripheral control of movement. Physiol Rev 54:215–243

    Google Scholar 

  • Struppler A, Velho F (1976) Single muscle spindle afferent recordings in human flexor reflex. In: Shahani M (ed) Motor systems: neurophysiology and muscle mechanisms, vol 4. Elsevier, Amsterdam, pp 197–207

    Google Scholar 

  • Swash M, Fox KP (1972) Muscle spindle innervation in man. J Anat 112:61–80

    Google Scholar 

  • Szentagothai J (1948) Anatomical considerations of monosynaptic reflex arcs. J Neurophysiol 11:445–454

    Google Scholar 

  • Szumski AJ, Burg D, Struppler A, Velho F (1974) Activity of muscle spindles during muscle twitch and clonus in normal and spastic human subjects. Electroencephalogr Clin Neurophysiol 37:589–597

    Google Scholar 

  • Taylor A (1981) A critique of the papers by Vallbo and Hagbarth. In: Taylor A, Prochazka A (eds) Muscle receptors and movement. MacMillan, London, pp 287–290

    Google Scholar 

  • Taylor A, Appenteng K (1981) Distinctive modes of static and dynamic fusimotor drive in jaw muscles. In: Taylor A, Prochazka A (eds) Muscle receptors and movement. MacMillan, London, pp 179–192

    Google Scholar 

  • Taylor A, Cody FWJ (1974) Jaw muscle spindle activity in the cat during normal movements of eating and drinking. Brain Res 71:523–530

    Google Scholar 

  • Taylor A, Davey MR (1968) Behaviour of jaw muscle stretch receptors during active and passive movements in the cat. Nature 220:301–302

    Google Scholar 

  • Taylor A, Prochazka A (1981) Muscle receptors and movement. MacMillan, London

    Google Scholar 

  • Te Kronnie G, Donselaar Y, Soukup T, Zelená J (1982) Development of immunohistochemical characteristics of intrafusal fibres in normal and de-efferented rat muscle spindles. Histochemistry 74:355–366

    Google Scholar 

  • Thelander HE (1924) The course and distribution of the radix mesencephalica trigemini in the cat. J Comp Neurol 37:207–220

    Google Scholar 

  • Thorson J, Biederman-Thorson M (1974) Distributed relaxation processes in sensory adaptation. Science 183:161–172

    Google Scholar 

  • Trott J (1976) The effect of low-amplitude muscle vibration on the discharge of fusimotor neurones in the decerebrate cat. J Physiol 255:635–649

    Google Scholar 

  • Vallbo ÅB (1970a) Slowly adapting muscle receptors in man. Acta Physiol Scand 78:315–333

    Google Scholar 

  • Vallbo ÅB (1970b) Discharge patterns in human muscle spindle afferents during isometric voluntary contractions. Acta Physiol Scand 80:552–566

    Google Scholar 

  • Vallbo ÅB (1971) Muscle spindle response at the onset of voluntary isometric contractions in man. Time difference between fusimotor and skeletomotor effects. J Physiol 218:405–431

    Google Scholar 

  • Vallbo ÅB (1972) Single unit recording from human peripheral nerves: muscle receptor discharge in resting muscles and during voluntary contractions. Excerpta Med Int Congr Ser 253:283–297

    Google Scholar 

  • Vallbo ÅB (1973a) The role of the muscle spindles in voluntary motor activity. Acta Physiol Scand (Suppl) 396:38

    Google Scholar 

  • Vallbo ÅB (1973b) Muscle spindle afferent discharge from resting and contracting muscles in normal human subjects. In: Desmedt JE (ed) New developments in electromyography and clinical neurophysiology, vol 3. Karger, Basel, pp 251–262

    Google Scholar 

  • Vallbo ÅB (1974a) Afferent discharge from human muscle spindles in non-contracting muscles. Steady state impulse frequency as a function of joint angle. Acta Physiol Scand 90:303–318

    Google Scholar 

  • Vallbo ÅB (1974b) Human muscle spindle discharge during isometric voluntary contractions. Amplitude relations between spindle frequency and torque. Acta Physiol Scand 90:319–336

    Google Scholar 

  • Vallbo ÅB (1981) Basic patterns of muscle spindle discharge in man. In: Taylor A, Prochazka A (eds) Muscle receptors and movement. MacMillan, London, pp 263–276

    Google Scholar 

  • Vallbo ÅB, Hagbarth K-E (1968) Activity from skin mechanoreceptors recorded percutaneously in awake human subjects. Exp Neurol 21:270–289

    Google Scholar 

  • Vallbo ÅB, Hagbarth K-E (1973) Micro-electrode recordings from human peripheral nerves. In: Desmedt JE (ed) New developments in electromyography and clinical neurophysiology, vol 2. Karger, Basel, pp 67–84

    Google Scholar 

  • Vallbo ÅB, Hulliger M (1979) Flexible balance between skeletomotor and fusimotor activity during voluntary movements in man. Neurosci Lett (Suppl) 3:103

    Google Scholar 

  • Vallbo ÅB, Hulliger M (1981) Independence of skeletomotor and fusimotor activity in man? Brain Res 223:176–180

    Google Scholar 

  • Vallbo ÅB, Hulliger M (1982) The dependence of discharge rate of spindle afferent units on the size of the load during isotonic position holding in man. Brain Res 237:297–307

    Google Scholar 

  • Vallbo ÅB, Hagbarth K-E, Torebjörk HE, Wallin BG (1979) Somatosensory, proprioceptive, and sympathetic activity in human peripheral nerves. Physiol Rev 59:919–957

    Google Scholar 

  • Vedel JP (1975) Effets des stimulations du noyau caudé sur l'activité des terminaisons fusoriales primaires et secondaires du muscle soléaire. Exp Brain Res 22:113–128

    Google Scholar 

  • Vedel JP, Coulmance M (1975) Modulation de l'activité des terminaisons fusoriales primaires et secondaires du muscle tibial antérieur au cours de contractions induites par stimulations du novau caudé. Exp Brain Res 22:129–144

    Google Scholar 

  • Vedel JP, Mouillac-Baudevin J (1969a) Contrôle de l'activité des fibres fusimotrices dynamiques et statiques par la formation réticulée mésencéphalique chez le chat. Exp Brain Res 9:307–324

    Google Scholar 

  • Vedel JP, Mouillac-Baudevin J (1969b) Étude fonctionelle du contrôle de l'activité des fibres fusimotrices dynamiques et statiques par les formations réticulées mésencéphaliques, pontiques et bulbaires chez la chat. Exp Brain Res 9:325–345

    Google Scholar 

  • Vedel JP, Mouillac-Baudevin J (1970) Contrôle pyramidal de l'activité des fibres fusimotrices dynamiques et statiques chez le chat. Exp Brain Res 10:39–63

    Google Scholar 

  • Vedel JP, Paillard J (1965) Effet différentiel des stimulations du noyau caudé et du cortex frontal sur la sensibilité dynamique des terminaisons fusoriales primaires chez le chat. J Physiol (Paris) 57:716–717

    Google Scholar 

  • Voorhoeve PE, Van Kanten RW (1962) Reflex behaviour of fusimotor neurones of the cat upon electrical stimulation of various afferent fibres. Acta Physiol Pharmacol Neerl 10:391–407

    Google Scholar 

  • Wallin BG, Hagbarth K-E (1978) Muscle spindle activity in man during voluntary alternating movements, parkinsonian tremor and clonus. In: Desmedt JE (ed) Progress in clinical neurophysiology, vol 5. Karger, Basel, pp 150–159

    Google Scholar 

  • Wand P, Schwarz M, Kolasiewicz W, Sontag KH (1981) Nigral output neurons are engaged in regulation of static fusimotor action onto flexors in cat. Pflügers Arch 391:255–257

    Google Scholar 

  • Westbury D (1964) A quantitative study of muscle proprioceptors. B Sc Thesis, Oxford University

    Google Scholar 

  • Westbury DR (1980) Lack of a contribution from gamma motoneurone axons to Renshaw inhibition in the cat spinal cord. Brain Res 186:217–221

    Google Scholar 

  • Westbury DR (1982) A comparison of the structures of α and γ spinal motoneurones of the cat. J Physiol 325:79–91

    Google Scholar 

  • Wilson VJ (1966) Regulation and function of Renshaw cell discharge. In: Granit R (ed) Muscular afferents and motor control, Nobel symposium. Almqvist and Wiksell, Stockholm, pp 317–329

    Google Scholar 

  • Windhorst U, Meyer-Lohmann J (1977) The influence of extrafusal muscle activity on the discharge patterns of primary spindle endings. Pflügers Arch 372:131–138

    Google Scholar 

  • Windhorst U, Meyer-Lohmann J, Schmidt J (1975) Correlation of the dynamic behaviour of de-efferented primary muscle spindle endings with their static behaviour. Pflügers Arch 357:113–122

    Google Scholar 

  • Windhorst U, Schmidt J, Meyer-Lohmann J (1976) Analysis of the dynamic responses of de-efferented primary muscle spindle endings to ramp stretch. Pflügers Arch 366:233–240

    Google Scholar 

  • Wuerker RB, Henneman E (1963) Reflex regulation of primary (annulospiral) stretch receptors via gamma motoneurons in the cat. J Neurophysiol 26:539–550

    Google Scholar 

  • Yanagisawa N, Narabayashi H, Shimazu H (1963) Thalamic influences on the gamma motor system. Arch Neurol 9:348–357

    Google Scholar 

  • Yokota T, Voorhoeve PE (1969) Pyramidal control of fusimotor neurones supplying extensor muscles in the cat's forelimb. Exp Brain Res 9:96–115

    Google Scholar 

  • Young RR, Hagbarth K-E (1980) Physiological tremor enhanced by manoeuvres affecting the segmental stretch reflex. J Neurol Neurosurg Psychiatry 43:248–256

    Google Scholar 

  • Zelená J (1964) Development, degeneration and regeneration of receptor organs. Progr Brain Res 13:175–213

    Google Scholar 

  • Zelená J, Hnik P (1963) Effect of innervation on the development of muscle receptors. In: Gutmann E, Hnik P (eds) The effect of use and disuse on neuromuscular functions. Elsevier, Amsterdam, pp 95–105

    Google Scholar 

  • Zelená J, Soukup T (1973) Development of muscle spindles deprived of fusimotor innervation. Z Zellforsch 144:435–452

    Google Scholar 

  • Zelená J, Soukup T (1974) The differentiation of intrafusal fibre types in rat muscle spindles after motor denervation. Cell Tissue Res 153:115–136

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag

About this chapter

Cite this chapter

Hulliger, M. (1984). The mammalian muscle spindle and its central control. In: Reviews of Physiology, Biochemistry and Pharmacology, Volume 101. Reviews of Physiology, Biochemistry and Pharmacology, vol 101. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0027694

Download citation

  • DOI: https://doi.org/10.1007/BFb0027694

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-13679-8

  • Online ISBN: 978-3-540-39040-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics