Skip to main content

Experiments on impedance control to derive adaptive strategies

  • Section 2 Force Control
  • Conference paper
  • First Online:
Experimental Robotics III

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 200))

Abstract

This paper presents some experimental results on impedance control applied to an industrial manipulator, while considering the constraints and perturbations that occur during a typical assembly task (unknown and varying environment parameters, impacts, friction, noises,...). An experimental and theorical analysis is developed first to derive a simplified scheme from the original Hogan's controller. The simplifications concern the dynamic compensation stage and the force feedback, which has been suppressed to deal with experimental conditions. To increase the performances of the resulting controller, a higher level is added to modify on-line the desired impedance and/or the reference trajectory. This supervisor has been developed using fuzzy logic. Experimental results on an industrial IBM Scara illustrate the ability of the system to absorb large external impacts and perturbations due to variations in the behavior of the manipulator and its environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Hogan. Impedance control: A new approach to manipulation. ASME J. of Dyn. Sys. Meas. and Control, 107:1–24, 1985.

    Google Scholar 

  2. M.H. Raibert and J.J. Craig. Hybrid position/force control of manipulators. ASME J. of Dyn. Sys. Meas. and Control, 102:126–133, 1981.

    Google Scholar 

  3. X. Delebarre. Commandes en Position et Force de Deux Bras Manipulateurs pour l'Exploration Planétaire. PhD thesis, Université de Montpellier II, 1992.

    Google Scholar 

  4. J.E. Colgate. The Control of Dynamically Interacting Systems. PhD thesis, M.I.T., Dept. Mech. Ing., 1988.

    Google Scholar 

  5. N. Hogan. Stable execution of contact tasks using impedance control. In Int. Conf. on Rob. and Automation, pages 1047–1054. IEEE, 1987.

    Google Scholar 

  6. J.K. Mills. A generalized lyapunov approach to robotic manipulation stability during transition to and from contact tasks. In Japan-USA Conf. on Flexible Automation, pages 903–910. ISCIE, 1990.

    Google Scholar 

  7. T.A. Lasky and T.C. Hsia. On force-tracking impedance control of robot manipulators. In Int. Conf. on Rob. and Automation, pages 274–280. IEEE, 1991.

    Google Scholar 

  8. H. Seraji and R. Colbaugh. Adaptive force-based impedance control. In Int. Conf. on Intelligent Robots and Systems, pages 1537–1542. IEEE/RSJ, 1993.

    Google Scholar 

  9. R.J. Anderson and M.W. Spong. Hybrid impedance control of robotics manipulators. IEEE J. of Rob. and Automation, 4(5):549–556, 1988.

    Article  Google Scholar 

  10. O. Khatib and J. Burdick. Motion and force control of robot manipulators. In Int. Conf. on Rob. and Automation, pages 1381–1386. IEEE, 1986.

    Google Scholar 

  11. C.H. An and J. M. Hollerbach. The role of dynamic models in cartesian force control of manipulators. The Int. Jal of Robotics Research, 8:54–72, 1989.

    Google Scholar 

  12. G. Alici and R.W. Daniel. Experimental comparison of model-based robot position control strategies. In Int. Conf. on Intelligent Robots and Systems, pages 76–83. IEEE/RSJ, 1993.

    Google Scholar 

  13. O. Khatib. A unified approach for motion and force control of robot manipulators: The operational space formulation. IEEE J. of Rob. and Automation, 3(1):45–53, 1987.

    Google Scholar 

  14. R. Volpe and P. Khosla. Experimental verification of a strategy for impact control. In Int. Conf. on Rob. and Automation, pages 1854–1860. IEEE, 1991.

    Google Scholar 

  15. I.H. Suh, J.H. Hong, S.R. Oh, and K.B. Kim. Fuzzy rule based position/force control of industrial manipulator. In Int. Workshop on Intelligent Robots and Systems, pages 1617–1622. IEEE, 1991.

    Google Scholar 

  16. H. Gaudin. Contribution à l'identification in situ des constantes d'inertie et des lois de frottements articulaires en vue d'une application expérimentale au suivi de trajectoires optimales. PhD thesis, Université de Poitiers, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Tsuneo Yoshikawa (PhD)Fumio Miyazaki (PhD)

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag London Limited

About this paper

Cite this paper

Morel, G., Bidaud, P. (1994). Experiments on impedance control to derive adaptive strategies. In: Yoshikawa, T., Miyazaki, F. (eds) Experimental Robotics III. Lecture Notes in Control and Information Sciences, vol 200. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0027588

Download citation

  • DOI: https://doi.org/10.1007/BFb0027588

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-19905-2

  • Online ISBN: 978-3-540-39355-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics