Skip to main content

DC potentials of the cerebral cortex

Seizure activity and changes in gas pressures

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology, Volume 106

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ayala GF, Walker AE (1965) Steady potential fields in cortical epileptogenesis. Electroencephalogr Clin Neurophysiol 18:519

    Google Scholar 

  • Ayala GF, Matsumoto H, Gumnit RJ (1970) Excitability changes and inhibitory mechanisms in neocortical neurons during seizures. J Neurophysiol 33:73–85

    PubMed  Google Scholar 

  • Ayala GF, Dichter M, Gumnit RJ, Matsumoto H, Spencer WA (1973) Genesis of epileptic interictal spikes. New knowledge of cortical feedback systems suggests a neurophysiological explanation of brief paroxysms. Brain Res 52:1–17

    Article  PubMed  Google Scholar 

  • Baumgartner G, Creutzfeldt O, Jung R (1963) Microphysiology of cortical neurons in acute anoxia and in retinal ischaemia. In: Gastaut H, Meyer JS (eds) Cerebral anoxia and the EEG. Thomas, Springfield, pp 5–34

    Google Scholar 

  • Besson JM, Aleonard P (1965) Variations du potentiel cortical continu sous l'influence de modifications ventilatoires. J Physiol (Paris) 57:558–559

    Google Scholar 

  • Besson JM, Woody CD, Aleonard P, Thompson HK, Albe-Fessard D, Marshall WH (1970) Correlations of brain d–c shifts with changes in cerebral blood flow. Am J Physiol 218:284–291

    PubMed  Google Scholar 

  • Bingmann D, Kolde G, Speckmann E-J (1981a) Reactions of CA3 neurons in hippocampal slices to changes of PCO2 and pH in the bath solution. Pflügers Arch 391:R32

    Google Scholar 

  • Bingmann D, Kienecker EW, Caspers H, Knoche H (1981b) Chemoreceptor activity of sinus nerve fibres after their implanation into the wall of the external artery. In: Belmonte C, Pallot DJ, Acker H, Fidone S (eds) Arterial chemoreceptors. Leicester University Press, Leicester, pp 92–101

    Google Scholar 

  • Bishop GH, O'Leary JL (1950) The effect of polarizing currents on cell potentials and other significance in the interpretation of central nervous activity. Electronencephalogr Clin Neurphysiol 2:401–416

    Article  Google Scholar 

  • Brazier MAB (1959) The historical development of neurophysiology. In: Field J (ed) Neurophysiology, vol 1. American Physiological Society, Washington, pp 1–58 (Handbook of physiology, sect 1)

    Google Scholar 

  • Brazier MAB (1963) The discoverers of the steady potentials of the brain: Caton and Beck. UCLA Forum Sci 1:1–14

    Google Scholar 

  • Brown AM, Berman PR (1970) Mechanism of excitation of Aplysia neurons by carbon dioxide. J Gen Physiol 56:543–558

    Article  PubMed  Google Scholar 

  • Bureš J, Burešova O, (1957) Die anoxische Terminaldepolarisation als Indicator der Vulnerabilität der Großhirnrinde bei Anoxie und Ischämie. Pflügers Arch 264:325–334

    Article  Google Scholar 

  • Bureš J, Burešova O, Krivanek J (1974) The mechanism and applications of Leao's spreading depression of electroencephalographic activity. Academic, New York

    Google Scholar 

  • Carpenter DO, Hubbard JH, Humphrey DR, Thompson HK, Marshall WH (1974) Carbon dioxide effects on nerve cell function. In: Nahas G, Schaefer KE (eds) Carbon dioxide and metabolic regulations. Springer, Heidelberg New York Berlin, pp 49–62 (Topics in environmental physiology and medicine)

    Google Scholar 

  • Caspers H (1959) Über die Beziehungen zwischen Dendritenpotential und Gleichspannung an der Hirnrinde. Pflügers Arch 269:157–181

    Article  Google Scholar 

  • Caspers H (1963) Relations of steady potential shifts in the cortex to the wakefulness sleep spectrum. In: Brazier MAB (ed) Brain function, University of California Press, Berkeley, pp 177–200

    Google Scholar 

  • Caspers H (1965) Shifts of the cortical steady potential during various stages of sleep. In: Jouvet M (ed) Aspects anatomo-fonctionnels de la physiologie du sommeil. Centre National de la Recherche Scientifique, Paris, 213–229

    Google Scholar 

  • Caspers H (1974) Preface. In: A Remond (ed) Handbook of electroencephalography and clinical neurophysiology, vol 10/A. Elsevier, Amsterdam, p 10A/3

    Google Scholar 

  • Caspers H, Speckmann E-J (1969) DC potential shifts in paroxysmal states. In: Jasper HH, Ward AA, Pope A (eds) Basic mechanisms of the epilepsies. Little Brown, Boston, pp 375–388

    Google Scholar 

  • Caspers H, Speckmann E-J (1971) Gleichspannungsverschiebungen an der Hirnrinde bei Asphyxie. Ärztl Forsch 25:241–255

    Google Scholar 

  • Caspers H, Speckmann E-J (1972) Cerebral pO2, pCO2 and pH: Changes during convulsive activity and their significance for spontaneous arrest of seizures. Epilepsia (Amst) 13:699–725

    PubMed  Google Scholar 

  • Caspers H, Speckmann E-J (1974) Cortical DC shifts associated with changes of gas tensions in blood and tissue. In: Remond A (ed) Handbook of electroencephalography and clinical neurophysiology, vol 10 A. Elsevier, Amsterdam, pp 10A/41–10A/65

    Google Scholar 

  • Caspers H, Schütz E, Speckmann E-J (1963) Gleichspannungsänderungen an der Hirnrinde bei Sauerstoffmangel. Z Biol 114:112–126

    PubMed  Google Scholar 

  • Caspers H, Speckmann E-J, Lehmenkühler A (1979) Effects of CO2 on cortical field potentials in relation to neuronal activity. In: Speckmann E-J, Caspers H (eds) Origin of cerebral field potentials. Thieme, Stuttgart, pp 151–163

    Google Scholar 

  • Caspers H, Speckmann E-J, Lehmenkühler A (1980) Electrogenesis of cortical DC potentials. Prog Brain Res 54:3–15

    PubMed  Google Scholar 

  • Caspers H, Speckmann E-J, Lehmenkühler A (1984) Electrogenesis of slow potentials of the brain. In: Elbert T, Rockstroh B, Lutzenberger W, Birbaumer N (eds) Self-regulation of the brain and behavior. Springer, Berlin Heidelberg New York, pp 27–41

    Google Scholar 

  • Caspers H, Speckmann E-J, Bingmann D, Lehmenkühler A (1986) Wirkungen von CO2 auf das Membranpotential einzelner Neurone. In: Grote J, Thews G (eds) Aktuelle Probleme der Atmungs-und Kreislaufregulation. Steiner, Stuttgart, pp 185–195 (Funktionsanalyse biologischer System, vol 15)

    Google Scholar 

  • Castelluci VF, Goldring S (1970) Contribution to steady potential shifts of slow depolarization in cells presumed to be glia. Electroencephalogr Clin. Neurophysiol 28:109–118

    Article  PubMed  Google Scholar 

  • Caton R (1875) The electrical currents of the brain. Br Med J. 2:278

    Google Scholar 

  • Chalazonitis N (1963) Effects of changes in pCO2 and pO2 on rhythmic potentials from giant neurons. Ann NY Acad Sci 109:451–479

    PubMed  Google Scholar 

  • Cohen MW (1974) Glial potentials and their contribution to extracellular recordings. In: Remond A (ed) Handbook of electroencephalography and clinical neurophysiology, vol 2/B. Elsevier, Amsterdam, pp 2B/43–2B/60

    Google Scholar 

  • Collewijn H, van Harreveld A (1966) Intracellular recording from cat spinal motoneurons during acute asphyxia. J Physiol (Lond) 185:1–14

    PubMed  Google Scholar 

  • Cragg P, Patterson L, Purves MJ (1977) The pH of brain extracellular fluid in the cat. J Physiol (Lond) 272:137–166

    PubMed  Google Scholar 

  • Creutzfeldt OD, Houchin J (1974) Neuronal basis of EEG waves. In: Remond A (ed) Handbook of electroencephalography and clinical neurophysiology, vol 2C. Elsevier, Amsterdam, pp 2C/5–2C/55

    Google Scholar 

  • Creutzfeldt OD, Kasamatsu A, Vaz-Ferreira A (1957) Aktivitätsänderungen einzelner corticaler Neurone im akuten Sauerstoffmangel und ihre Beziehungen zum EEG bei Katzen. Pflügers Arch 263:647–667

    Article  Google Scholar 

  • Davis H, Davis PA, Loomis AL, Harvey EN, Hobart G (1939) A search for changes in direct current potentials of the head during sleep. J Neurophysiol. 2:129–135

    Google Scholar 

  • Dichter M, Spencer WA (1969a) Penicillin-induced interictal discharge from the cat hippocampus. I. Characteristics and topographical feature. J Neurophysiol 32:649–662

    PubMed  Google Scholar 

  • Dichter M, Spencer WA (1969b) Penicillin-induced interictal discharge from the cat hippocampus. II. Mechanism underlying origin and restriction. J Neurophysiol 32:663–687

    PubMed  Google Scholar 

  • Dietzel I, Heinemann U, Hofmeier G, Lux HD (1980) Transient changes in the size of the extracellular space in the sensorimotor cortex of cats in relation to stimulus-induced changes in potassium concentration. Exp Brain Res 40:432–439

    Article  PubMed  Google Scholar 

  • Dietzel I, Heinemann U, Hofmeier G, Lux HD (1982a) Changes in the extracellular volume in the cerebral cortex of cats in relation to stimulus-induced epileptiform afterdischarges. In: Klee MR, Lux HD, Speckmann E-J (eds) Physiology and pharmacology of epileptogenic phenomena. Raven, New York, pp 5–12

    Google Scholar 

  • Dietzel I, Heinemann U, Hofmeier G, Lux HD (1982b) Stimulus-induced changes in extracellular Na+ and Cl concentration in relation to changes in the size of the extracellular space. Exp Brain Res 46:73–84

    Article  PubMed  Google Scholar 

  • Dora E, Zeuthen T (1976) Brain metabolism and ion movements in the brain cortex of the rat during anoxia. In: Kessler M, Clark LC Jr, Lübbers DW, Silver IA, Simon W (eds) Ion and enzyme electrodes in biology and medicine. Urban and Schwarzenberg, München, pp 294–298

    Google Scholar 

  • Eccles RM, Løyning Y, Oshima T (1966) Effects of hypoxia on the monosynaptic reflex pathway in the cat spinal cord. J Neurophysiol 29:315–332

    PubMed  Google Scholar 

  • Eidelberg E, Meyerson BA (1964) Effects of lidocaine on cortical dendritic activity. Arch int Pharmacodyn. 147:576–858

    Google Scholar 

  • Eidelberg E, Kolmodin GM, Meyerson BA (1967) Effect of asphy xia on the cortical steady potential in adult and fetal sheep. Acta Physiol Scand 69:257–261

    PubMed  Google Scholar 

  • Elger CE, Speckmann E-J (1980) Focal interictal epileptiform discharges (FIED) in the epicortical EEG and their relations to spinal field potentials in the rat. Electroencephalogr Clin Neurophysiol 48:447–460

    Article  PubMed  Google Scholar 

  • Elger CE, Speckmann E-J (1983) Penicillin-induced epileptic foci in the motor cortex: vertical inhibition. Electroencephalogr Clin Neurophysiol 56:604–622

    Article  PubMed  Google Scholar 

  • Elger CE, Speckmann E-J, Prohaska O, Caspers H (1981) Pattern of intracortical-potential distribution during focal interictal epileptiform discharges (FIED) and its relation to spinal field potentials in the rat. Electroencephalogr Clin Neurophysiol 51:393–402

    Article  PubMed  Google Scholar 

  • Ferguson JH, Jasper HH (1971) Laminar DC studies of acetylcholine-activated epileptiform discharges in cerebral cortex. Electroencephalogr Clin Neurophysiol 30:377–390

    Article  PubMed  Google Scholar 

  • Glötzner F (1967) Intracelluläre Potentiale, EEG and corticale Gleichspannung an der sensomotorischen Rinde der Katze bei akuter Hypoxie. Arch Psychiat Nervenkr 210:274–296

    Article  PubMed  Google Scholar 

  • Godfraind JM, Kawamura H, Krnjevic K, Pumain R (1971) Actions of dinitrophenol and some other metabolic inhibitors on cortical neurons. J Physiol (Lond) 215:199–222

    PubMed  Google Scholar 

  • Goldensohn ES, Schoenfeld RL, Hoefer PFA (1951) The slowly changing voltage of the brain and the elctroencephalogram. Electroencephalogr Clin Neurophysiol 3:231–236

    Article  PubMed  Google Scholar 

  • Goldring S, O'Leary JL, Lam RL (1953) Effect of malononitril upon the electroencephalogram of the rabbit. Electroencephalogr Clin Neurophysiol 5:395–400

    Article  Google Scholar 

  • Gumnit R (1974a) Introduction and recording techniques. In: Remond A (ed) Handbook of electroencephalography and clinical neurophysiology, vol 10/A. Elsevier, Amsterdam, pp 10A/5–10A/11

    Google Scholar 

  • Gumnit R (1974b) DC shifts accompanying seizure activity. In: Remonad A (ed) Handbook of electroencephalography and clinical neurophysiology, vol 10/A. Elsevier, Amsterdam, pp 10A/66–10A/87

    Google Scholar 

  • Gumnit R (1979) Field potentials in partial seizures — a reappraisal. In: Speckmann E-J, Caspers H (eds) Origin of cerebral field potentials. Thieme, Stuttgart, pp 183–194

    Google Scholar 

  • Gumnit R, Takahashi T (1965) Changes in direct current activity during experimental focal seizures. Electroencephalogr Clin Neurophysiol 19:63–74

    Article  PubMed  Google Scholar 

  • Gumnit R, Matsumoto H, Vasconetto C (1970) DC activity in the depth of an experimental focus. Electroencephalogr Clin Neurophysiol 28:333–339

    Article  PubMed  Google Scholar 

  • Haider M, Groll-Knapp E, Ganglberger JA (1981) Event-related slow (DC) potentials in the human brain. Rev Physiol Biochem Pharmacol 88:125–197

    PubMed  Google Scholar 

  • Hansen AJ (1985) Effect of anoxia on ion distribution in the brain. Physiol Rev 65:101–148

    PubMed  Google Scholar 

  • Hansen AJ, Olsen CE (1980) Brain extracellular space during spreading depression and ischemia. Acta Physiol Scand 108:355–365

    PubMed  Google Scholar 

  • Hansen AJ, Zeuthen T (1981) Extracellular ion concentration during spreading depression and ischemia in the rat brain cortex. Acta Physiol Scand 113:437–445

    PubMed  Google Scholar 

  • Harris RJ, Symon L, Branston NM, Bayhan M (1981) Changes in extracellular calcium activity in cerebral ischaemia. J Cereb Blood Flow Metab 1:203–209

    PubMed  Google Scholar 

  • Heinemann U, Lux HD (1977) Ceiling of stimulus induced rises in extracellular potassium concentration. Brain Res 120:231–249

    Article  PubMed  Google Scholar 

  • Heinemann U, Lux HD, Gutnick J (1977) Extracellular free calcium and potassium during paroxysmal activity in the cerebral cortex of the cat. Exp Brain Res 27:237–243

    Article  PubMed  Google Scholar 

  • Heinemann U, Lux HD, Gutnick J (1978) Changes in extracellular free calcium and postassium activity in the somatosensory cortex of cats. In: Chalazonitis N, Boisson M (eds) Abnormal neuronal discharges. Raven, New York, pp 329–345

    Google Scholar 

  • Heinemann U, Lux HD, Marciani MG, Hofmeier G (1979) Slow potentials in relation to changes in extracellular potassium activity in the cortex of cats. In: Speckmann E-J, Caspers H (eds) Origin of cerebral field potentials. Thieme, Stuttgart, pp 33–48

    Google Scholar 

  • Heinemann U, Konnerth A, Lux HD (1981) Stimulation induced changes in extracellular free calcium in normal cortex and chronic alumina cream foci of cats. Brain Res 213:246–250

    Article  PubMed  Google Scholar 

  • Heinemann U, Konnerth A, Pumain R, Wadman WJ (1986) Extracellular calcium and potassium concentration changes in chronic epileptic brain tissue. Adv Neurol pp 641–661

    Google Scholar 

  • Hirsch H, Euler KH, Schneider M (1957) Über die Erholung und Wiederbelebung des Gehirns nach Ischämie bei Normothermie. Pflügers Arch 265:281–313

    Article  Google Scholar 

  • Hirsch H, Scholl H, Dickmans HA, Eisolt J, Gaehtgens P, Mann H, Krankenhagen B (1968a) Die corticale Gleichspannung des Hundegehirns bei Veränderung des arteriellen pO2 and pCO2. Pflügers Arch 301:344–350

    Article  Google Scholar 

  • Hirsch H, Scholl H, Dickmans HA, Eisolt, J, Gaehtgens P, Mann H, Krankenhagen B (1968b) Über die corticale Gleichspannung nach Überschreiten der Wiederbelebungszeit des Gehirns. Pflügers Arch 301:351–357

    Article  Google Scholar 

  • Hirsch H, Scholl H, Paschke KG, Schmid-Schönbein H (1968c) Die Veränderungen der corticalen Gleichspannung bei kompletter und inkompletter Ischämie des Gehirns. Pflügers Arch 301:334–343

    Article  Google Scholar 

  • Hossmann K-A (1982) Treatment of experimental cerebral ischemia. J Cereb Blood Flow Metab 2:275–297

    PubMed  Google Scholar 

  • Hotson JR, Sypert GW, Ward AA (1973) Extracellular potassium concentration changes during propagated seizures in neocortex. Exp Neurol 38:20–26

    Article  PubMed  Google Scholar 

  • Kempinsky WH (1954) Steady potential gradients in experimental cerebral occlusion. Electroencephalogr Clin Neurophysiol 6:375–388

    Article  Google Scholar 

  • Kirshner HS, Blank WF Jr, Myers RE (1976) Changes in cortical subarachnoid fluid potassium concentrations during hypoxia. Arch Neurol 33:84–90

    PubMed  Google Scholar 

  • Köhler W, Held R, O'Connel DW (1982) An investigation of cortical currents. Proc Philos Soc 96:290–330

    Google Scholar 

  • Kolmodin GM, Skoglund CR (1959) Influence of asphyxia on membrane potential level and action potentials of spinal moto-and interneurons. Acta Physiol Scand 45:1–18

    Google Scholar 

  • Kraig RP, Ferreira-Filho CR, Nicholson C (1983) Alkaline and acid transients in cerebellar microenvironment. J Neurophysiol 49:831–850

    PubMed  Google Scholar 

  • Labeyrie E, Koechlin Y (1979) Photoelectrode with a very short time-constant for recording intracerebrally Ca++ transients at a cellular level. J Neurosci Methods 1:35–39

    Article  PubMed  Google Scholar 

  • Leao AAP (1944) Spreading depression of activity in the cerebral cortex. J Neurophysiol 7:359–390

    Google Scholar 

  • Leao AAP (1947) Further observations of the spreading depression of activity in the cerebral cortex. J Neurophysiol 10:409–414

    Google Scholar 

  • Lehmenkühler A, Speckmann E-J, Caspers H (1976) Cortical spreading depression in relation to potassium activity, oxygen tension, local flow and carbon dioxide tension. In: Kessler M, Clark LC Jr, Lübbers DW, Silver IA, Simon W (eds) Ion and enzyme electrodes in biology and medicine. Urban and Schwarzenberg, München, pp 311–315

    Google Scholar 

  • Lehmenkühler A (1979) Interrelationships between DC potentials, potassium activity, pO2 and pCO2 in the cerebral cortex of the rat. In: Speckmann E-J, Caspers H (eds) Origin of cerebral field potentials. Thieme, Stuttgart, pp 49–59

    Google Scholar 

  • Lehmenkühler A (1982) Transient alkaline shift in the cortical tissue pH during the onset of spreading depression and of anoxic negative DC potential shift. Pflügers Arch 394:R49

    Google Scholar 

  • Lehmenkühler A, Janus J (1978) Relation between local blood flow and extra-cellular potassium activity in the rat cerebral cortex during changes of pCO2. Arzneimittel forsch 28:871

    Google Scholar 

  • Lehmenkühler A, Bingmann D, Lange-Asschenfeldt H, Berges D (1978) Oxygen pressure and ictal activity in the cerebral cortex of artificially ventilated rats during exposure to oxygen high pressure. Adv Exp Med Biol 94:679–658

    Google Scholar 

  • Lehmenkühler A, Lensing J, Caspers H, Janus J (1979) Biphasic reaction of extracellular Ca++ activity during interictal discharges in the brain cortex. Pflügers Arch 382:R42

    Google Scholar 

  • Lehmenkühler A, Zidek W, Staschen M, Caspers H (1981) Cortical pH and pCa in relation to DC potential shifts during spreading depression and asphyxiation. In: Sykova E, Hnik P, Vyklicky L (eds) Ion-selective microelectrodes and their use in excitable tissues. Plenum, New York, pp 225–229

    Google Scholar 

  • Lehmenkühler A, Zidek W, Caspers H (1982a) Changes of extracellular Na+ and Cl activity in the brain cortex during seizure discharges. In: Klee MR, Lux HD, Speckmann E-J (eds) Physiology and pharmacology of epileptogenic phenomena. Raven, New York, pp 37–45

    Google Scholar 

  • Lehmenkühler A, Staschen M, Caspers H (1982b) Depth profile of extracellular pH in the brain cortex during seizure activity. Pflügers Arch 394:R50

    Google Scholar 

  • Lehmenkühler A, Caspers H, Kersting U (1984) Relations between DC potentials, ion activities and volume fraction in the extracellular space of the brain cortex with increasing pCO2. Electronencephalogr Clin Neurophysiol 58:91P

    Google Scholar 

  • Lehmenkühler A, Caspers H, Kersting U (1985) Relations between DC potentials, extracellular ion activites and extracellular volume fraction in the cerebral cortex with changes in pCO2. In: Kessler M, Harrison DK, Höper J (eds) Ion measurements in physiology and medicine. Springer, Berlin Heidelberg New York Tokyo, pp 199–205

    Google Scholar 

  • Lehmenkühler A, Kersting U, Richter A, Boerrigter P (1986) Relations of bioelectric activity, extracellular ion concentrations and extracellular volume in cortical epileptic foci. In: Speckmann E-J, Schulze H, Walden J (eds) Epilepsy and calcium. Urban and Schwarzenberg, Munch, pp 227–246

    Google Scholar 

  • Li C-L, Jasper HH (1953) Microelectrode studies of the electrical activity of the cerebral cortex in the cat. J Physiol (Lond) 121:117–140

    PubMed  Google Scholar 

  • Libet B, Gerard RW (1941) Steady potential fields and neurone activity. J Neurophysiol 4:438–455

    Google Scholar 

  • Libet B, Gerard RW (1962) An analysis of some correlates of steady potentials in mammalian cerebral cortex. Electroencephalogr Clin Neurophysiol 14:445–452

    Article  PubMed  Google Scholar 

  • Loeschcke HH (1956) Über den Einfluß von CO2 auf die Bestandpotentiale der Hirnhäute. Pflügers Arch 262:532–536

    Article  Google Scholar 

  • Loeschcke HH (1971) DC potentials between CSF and blood. In: Siesjö BK, Sørensen SC (eds) Ion homeostasis of the brain. Munksgaard, Copenhagen, pp 77–96 (Alfred Benzon Symposium III)

    Google Scholar 

  • Lux HD (1974) The kinetics of extracellular potassium: relation to epileptogenesis. Epilepsia 15:375–393

    PubMed  Google Scholar 

  • Lux HD, Heinemann U (1983) Consequences of calcium electrogenesis for the generation of paroxysmal depolarization shift. In: Speckmann E-J, Elger CE (eds) Epilepsy and motor system. Urban & Schwarzenberg, München, pp 100–119

    Google Scholar 

  • Lux HD, Heinemann U, Dietzel I (1986) Ionic changes and alterations in the size of the extracellular space during epileptic activity. 44:619–639

    Google Scholar 

  • Matsumoto H, Ajmone-Marsan C (1964a) Cortical cellular phenomena in experimental epilepsy. Interictal manifestations. Exp Neurol 9:286–304

    Article  Google Scholar 

  • Matsumoto H, Ajmone-Marsan C (1946) Cortical cellular phenomena in experimental epilepsy. Ictal manifestations. Exp Neurol 9:305–326

    Article  Google Scholar 

  • Matsumoto H, Ayala GF, Gumnit RJ (1969) Neuronal behavior and triggering mechanism in cortical epileptic focus. J Neurophysiol 32:688–703

    PubMed  Google Scholar 

  • Meyer JS, Denny-Brown D (1955) Studies of cerebral circulation in brain injury. I. Validity of continued local cerebral electropolarography, thermometry and steady potentials as an indicator of local circulatory and functional changes. Electroencephalogr Clin Neurophysiol 7:511–528

    Article  Google Scholar 

  • Monnier AM (1955) Die funktionelle Bedeutung der Dämpfung in der Nervenfaser. Ergeb Physiol 48:230–285

    PubMed  Google Scholar 

  • Moody W, Futamachi KJ, Prince DA (1974) Extracellular potassium activity during epileptogenesis. Exp Neurol 42:248–263

    Article  PubMed  Google Scholar 

  • Morris ME (1974) Hypoxia and extracellular potassium activity in the guinea-pig cortex. Can J Physiol Pharmacol 52:872–882

    PubMed  Google Scholar 

  • Mutch WAC, Hansen AJ (1984) Extracellular pH changes during spreading depression and cerebral ischemia: mechanisms of brain pH regulation. J Cereb Blood Flow Metab 4:17–27

    PubMed  Google Scholar 

  • Mutch WAC, Hansen AJ (1985) Brain extracellular pH changes during alterations in substrate supply. In: Kessler M, Harrison DK, Höper J (eds) Ion measurements in physiology and medicine. Springer, Berlin Heidelberg New York Tokyo, pp 189–193

    Google Scholar 

  • Neher E, Lux HD (1973) Rapid changes of potassium concentration at the outer surface of exposed single neurons during membrane current flow. J Gen Physiol 61:385–399

    Article  PubMed  Google Scholar 

  • Nelson PG, Frank K (1963) Intracellularly recorded responses of nerve cells to oxygen deprivation. Am J Physiol 205:208–212

    PubMed  Google Scholar 

  • Nicholson C (1980) Modulation of extracellular calcium and its functional implications. Federation Proc 39:1519–1523

    Google Scholar 

  • Nicholson C, Kraig RP (1981) The behavior of extracellular ions during spreading depression. In: Zeuthen T (ed) The application of ion-selective microelectrodes, Elsevier, Amsterdam, pp 217–238

    Google Scholar 

  • Nicholson C, Phillips JM (1981) Ion diffusion modified by tortuosity and volume fraction in the extracellular microenvironment of the rat cerebellum. J Physiol (Lond) 321:225–257

    PubMed  Google Scholar 

  • Nicholson C, Kraig RP, Ferreira-Filho CR, Thompson P (1985) Hydrogen ion variations and their interpretation in the microenvironment of the vertebrate brain. In: Kessler M, Harrison DK, Höper J (eds) Ion measurements in physiology and medicine. Springer, Berlin Heidelberg New York Tokyo, pp 229–235

    Google Scholar 

  • Niechaj A, van Harrefeld A (1968) Intracellular recording from cat's spinal interneurons during asphyxiation. Brain Res 8:54–64

    Article  PubMed  Google Scholar 

  • O'Leary JL, Goldring S (1964) DC potentials of the brain. Physiol Rev 44:91–125

    PubMed  Google Scholar 

  • O'Leary JL, Goldring S (1976) Science and epilepsy. Neuroscience gains in epilepsy research. Raven, New York

    Google Scholar 

  • Prince DA (1974) Neuronal correlates of epileptiform discharges and cortical DC potentials. In: Rémond A (ed) Handbook of electroencephalography and clinical neurophysiology, vol 2/C. Elsevier, Amsterdam, pp 2C/56–2C/70

    Google Scholar 

  • Prince DA, Wilder BJ (1967) Control mechanism in cortical epileptogenic foci; “surround inhibition”. Arch Neurol 16:194–202

    PubMed  Google Scholar 

  • Prince DA, Lux HD, Neher E (1973) Measurement of extracellular potassium activity in cat cortex. Brain Res 50:489–495

    Article  PubMed  Google Scholar 

  • Prince DA, Pedley TA, Ransom BR (1978) Fluctuations in ion concentrations and seizures. In: Schoffeniels E, Franck G, Tower DB, Hertz L (eds) Dynamic properties of glia cells. Pergamon, Oxford, pp 281–303

    Google Scholar 

  • Pumain R, Kurcewicz I, Louvel J (1983) Fast extracellular calcium transients: involvement in epileptic processes. Science 222:177–179

    PubMed  Google Scholar 

  • Rémond A (ed) (1974) Handbook of electroenphalography and clinical neurophysiology, vol 10/A. Elsevier, Amsterdam

    Google Scholar 

  • Schneider MA Überlebens-und Wiederbelebungszeit von Gehirn, Herz, Leber, Niere nach Ischämie und Anoxie. Westdeutscher Verlag, Cologne

    Google Scholar 

  • Siesjö K, von Hanwehr R, Norgelius G, Nevander G, Ingvar M (1985) Extra-and intracellular pH in brain during seizures and in the recovery period following the arrest of seizure activity. J Cereb Blood Flow Metab 5:47–57

    PubMed  Google Scholar 

  • Somjen GG (1975) Electrophysiology of neuroglia. Annu Rev Physiol 37:163–190

    Article  PubMed  Google Scholar 

  • Somjen GG (1979) Extracellular potassium in the mammlian central nervous system. Annu Rev Physiol 41:159–177

    Article  PubMed  Google Scholar 

  • Somjen GG (1980) Stimulus-evoked and seizure-related responses of extracellular calcium activity in spinal cord compared to those in the cerebral cortex. J Neurophysiol 44:617–632

    PubMed  Google Scholar 

  • Somjen GG (1984) Interstitial ion concentration and the role of neuroglia in seizures. In: Schwartzkroin PA, Wheal HV (eds) Electrophysiology of epilepsy. Academic, London, pp 302–341

    Google Scholar 

  • Somjen GG, Aitken PG, Giacchino JL, McNamara JO (1986) Interstitial ion concentration and paroxysmal discharges in hippocampal formation and spinal cord. Neurol 44:663–680

    Google Scholar 

  • Speckmann E-J, Caspers H (1966) Die sogenannte anoxische Terminaldepolarisation und ihre Beziehung zur Wiederbelebungszeit des Gehirns. Pflügers Arch 289:R2

    Google Scholar 

  • Speckmann E-J, Caspers H (1967) Les modifications du potentiel continu cortical pendant l'arret respiratoire. Rev Neurol (Paris) 117:5–19

    PubMed  Google Scholar 

  • Speckmann E-J, Caspers H (1969) Verschiebungen des corticalen Bestandpotentials bei Veränderungen der Ventilationsgröße. Pflügers Arch 310:235–250

    Article  Google Scholar 

  • Speckmann E-J, Caspers H (1974) The effect of O2 and CO2 tensions in the nervous tissue on neuronal activity and DC potential. In: Rémond A (ed) Handbook of electroencephalography and clinical neurophysiology, vol 2/C. Elsevier, Amsterdam, pp 2C/71–2C/89

    Google Scholar 

  • Speckmann E-J, Elger CE (1982) Neurophysiological basis of the EEG and of DC potentials. In: Niedermeyer E, Lopes da Silva F (eds) Electroencephalography. Basc principles, clinical applications and related fields. Urban and Schwarzenberg, München, pp 1–13

    Google Scholar 

  • Speckmann E-J, Caspers H, Sokolov W (1970) Aktivitätsänderungen spinaler Neurone während und nach einer Asphyxie. Pflügers Arch 319:122–138

    Article  Google Scholar 

  • Speckmann E-J, Caspers H, Janzen RWC (1972) Relations between cortical DC shifts and membrane potential changes of cortical neurons associated with seizure activity. In: Petsche H, Brazier MAB (eds) Synchronization of EEG activity in epilepsies. Springer, New York, pp 93–111

    Google Scholar 

  • Speckmann E-J, Caspers H, Janzen RWC (1978) Laminar distribution of cortical field potentials in relation to neuronal activities during seizure discharges. In: Brazier MAB, Petsche H (eds) Architectonics of the cerebral cortex. Raven, New York, pp 191–209

    Google Scholar 

  • Staschen M, Zidek W, Lehmenkühler A, Caspers H (1981) Changes of extracellular ion activities (K+, Na+, Ca2+, H+, Cl) in relation to cortical DC potential shifts during reversible asphyxia. Pflügers Arch 389:R33

    Google Scholar 

  • Sugaya E, Goldring S and O'Leary JL (1964) Intracellular potentials associated with direct cortical response and seizure discharge in cat. Electroencephalogr Clin Neurophysiol 17:661–669

    Article  PubMed  Google Scholar 

  • Thomas RC (1976) The effect of carbon dioxide on the intracellular pH and buffering power of snail neurones. J Physiol (Lond) 255:715–735

    PubMed  Google Scholar 

  • Thomas RC, Meech RW (1982) Hydrogen ion currents and intracellular pH in depolarized voltage-clamped snail neurones. Nature 299:826

    Article  PubMed  Google Scholar 

  • Tschirgi RD, Taylor JL (1958) Slowly changing bioelectric potentials associated with the blood-brain barrier. Am J Physiol 195:7–22

    PubMed  Google Scholar 

  • Urbanics R, Leninger-Follert E, Lübbers DW (1978) Time course of changes of extracellular H+ and K+ activities during and after direct electrical stimulation of the brain cortex. Pflügers Arch 378:47–53

    Article  Google Scholar 

  • Van Harreveld A, Stamm JS (1953a) Spreading cortical convulsions and depressions. J Neurophysiol 16:352–366

    PubMed  Google Scholar 

  • Van Harreveld A, Stamm JS (1953b) Cerebral asphyxiation and spreading cortical depression. Am J Physiol 173:171–175

    PubMed  Google Scholar 

  • Vyskocil F, Kriz A, Bures J (1972) Potassium selective microelectrodes used for measuring the extracellular brain potassium during spreading depression and anoxic depolarization in rats. Brain Res 39:255–259

    Article  PubMed  Google Scholar 

  • Washizu Y (1960) Effect of CO2 and pH on the responses of spinal motoneurons. Brain Nerve 12:757–766

    Google Scholar 

  • Withrow CD (1972) Systemic carbon dioxide derangement. In: Purpura DP, Kiffin Penry J, Tower DB, Woodbury DM, Walter (eds) Experimental models of epilepsy. Raven, New York, pp 477–494

    Google Scholar 

  • Woody CD, Marshall WH, Besson JM, Thompson HK, Aleonard P, Albe-Fessard D (1970) Brain potential shift with respiratory acidosis in the cat and monkey. Am J Physiol 218:275–283

    PubMed  Google Scholar 

  • Wurtz RH, O'Flaherty JJ (1967) Physiological correlates of steady potential shifts during sleep and wekefulness. I. Sensitivity of the stady potential to alterations in carbon dioxide. Electroencephalogr Clin Neurophysiol 22:30–42

    Article  PubMed  Google Scholar 

  • Zidek W, Lehmenkühler A, Caspers H, Lange-Asschenfeldt H (1978) Macromolecular buffering reverses the CO2 effect on the membrane potential in snail neurons. Pflügers Arch 377:R43

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag

About this chapter

Cite this chapter

Caspers, H., Speckmann, EJ., Lehmenkühler, A. (1987). DC potentials of the cerebral cortex. In: Reviews of Physiology, Biochemistry and Pharmacology, Volume 106. Reviews of Physiology, Biochemistry and Pharmacology, vol 106. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0027576

Download citation

  • DOI: https://doi.org/10.1007/BFb0027576

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-17608-4

  • Online ISBN: 978-3-540-47713-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics