Advertisement

DC potentials of the cerebral cortex

Seizure activity and changes in gas pressures
  • Heinz Caspers
  • Erwin-Josef Speckmann
  • Alfred Lehmenkühler
Chapter
Part of the Reviews of Physiology, Biochemistry and Pharmacology book series (volume 106)

Keywords

Seizure Discharge Interictal Spike Deep Cortical Layer Paroxysmal Depolarization Shift Pyramidal Tract Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ayala GF, Walker AE (1965) Steady potential fields in cortical epileptogenesis. Electroencephalogr Clin Neurophysiol 18:519Google Scholar
  2. Ayala GF, Matsumoto H, Gumnit RJ (1970) Excitability changes and inhibitory mechanisms in neocortical neurons during seizures. J Neurophysiol 33:73–85PubMedGoogle Scholar
  3. Ayala GF, Dichter M, Gumnit RJ, Matsumoto H, Spencer WA (1973) Genesis of epileptic interictal spikes. New knowledge of cortical feedback systems suggests a neurophysiological explanation of brief paroxysms. Brain Res 52:1–17CrossRefPubMedGoogle Scholar
  4. Baumgartner G, Creutzfeldt O, Jung R (1963) Microphysiology of cortical neurons in acute anoxia and in retinal ischaemia. In: Gastaut H, Meyer JS (eds) Cerebral anoxia and the EEG. Thomas, Springfield, pp 5–34Google Scholar
  5. Besson JM, Aleonard P (1965) Variations du potentiel cortical continu sous l'influence de modifications ventilatoires. J Physiol (Paris) 57:558–559Google Scholar
  6. Besson JM, Woody CD, Aleonard P, Thompson HK, Albe-Fessard D, Marshall WH (1970) Correlations of brain d–c shifts with changes in cerebral blood flow. Am J Physiol 218:284–291PubMedGoogle Scholar
  7. Bingmann D, Kolde G, Speckmann E-J (1981a) Reactions of CA3 neurons in hippocampal slices to changes of PCO2 and pH in the bath solution. Pflügers Arch 391:R32Google Scholar
  8. Bingmann D, Kienecker EW, Caspers H, Knoche H (1981b) Chemoreceptor activity of sinus nerve fibres after their implanation into the wall of the external artery. In: Belmonte C, Pallot DJ, Acker H, Fidone S (eds) Arterial chemoreceptors. Leicester University Press, Leicester, pp 92–101Google Scholar
  9. Bishop GH, O'Leary JL (1950) The effect of polarizing currents on cell potentials and other significance in the interpretation of central nervous activity. Electronencephalogr Clin Neurphysiol 2:401–416CrossRefGoogle Scholar
  10. Brazier MAB (1959) The historical development of neurophysiology. In: Field J (ed) Neurophysiology, vol 1. American Physiological Society, Washington, pp 1–58 (Handbook of physiology, sect 1)Google Scholar
  11. Brazier MAB (1963) The discoverers of the steady potentials of the brain: Caton and Beck. UCLA Forum Sci 1:1–14Google Scholar
  12. Brown AM, Berman PR (1970) Mechanism of excitation of Aplysia neurons by carbon dioxide. J Gen Physiol 56:543–558CrossRefPubMedGoogle Scholar
  13. Bureš J, Burešova O, (1957) Die anoxische Terminaldepolarisation als Indicator der Vulnerabilität der Großhirnrinde bei Anoxie und Ischämie. Pflügers Arch 264:325–334CrossRefGoogle Scholar
  14. Bureš J, Burešova O, Krivanek J (1974) The mechanism and applications of Leao's spreading depression of electroencephalographic activity. Academic, New YorkGoogle Scholar
  15. Carpenter DO, Hubbard JH, Humphrey DR, Thompson HK, Marshall WH (1974) Carbon dioxide effects on nerve cell function. In: Nahas G, Schaefer KE (eds) Carbon dioxide and metabolic regulations. Springer, Heidelberg New York Berlin, pp 49–62 (Topics in environmental physiology and medicine)Google Scholar
  16. Caspers H (1959) Über die Beziehungen zwischen Dendritenpotential und Gleichspannung an der Hirnrinde. Pflügers Arch 269:157–181CrossRefGoogle Scholar
  17. Caspers H (1963) Relations of steady potential shifts in the cortex to the wakefulness sleep spectrum. In: Brazier MAB (ed) Brain function, University of California Press, Berkeley, pp 177–200Google Scholar
  18. Caspers H (1965) Shifts of the cortical steady potential during various stages of sleep. In: Jouvet M (ed) Aspects anatomo-fonctionnels de la physiologie du sommeil. Centre National de la Recherche Scientifique, Paris, 213–229Google Scholar
  19. Caspers H (1974) Preface. In: A Remond (ed) Handbook of electroencephalography and clinical neurophysiology, vol 10/A. Elsevier, Amsterdam, p 10A/3Google Scholar
  20. Caspers H, Speckmann E-J (1969) DC potential shifts in paroxysmal states. In: Jasper HH, Ward AA, Pope A (eds) Basic mechanisms of the epilepsies. Little Brown, Boston, pp 375–388Google Scholar
  21. Caspers H, Speckmann E-J (1971) Gleichspannungsverschiebungen an der Hirnrinde bei Asphyxie. Ärztl Forsch 25:241–255Google Scholar
  22. Caspers H, Speckmann E-J (1972) Cerebral pO2, pCO2 and pH: Changes during convulsive activity and their significance for spontaneous arrest of seizures. Epilepsia (Amst) 13:699–725PubMedGoogle Scholar
  23. Caspers H, Speckmann E-J (1974) Cortical DC shifts associated with changes of gas tensions in blood and tissue. In: Remond A (ed) Handbook of electroencephalography and clinical neurophysiology, vol 10 A. Elsevier, Amsterdam, pp 10A/41–10A/65Google Scholar
  24. Caspers H, Schütz E, Speckmann E-J (1963) Gleichspannungsänderungen an der Hirnrinde bei Sauerstoffmangel. Z Biol 114:112–126PubMedGoogle Scholar
  25. Caspers H, Speckmann E-J, Lehmenkühler A (1979) Effects of CO2 on cortical field potentials in relation to neuronal activity. In: Speckmann E-J, Caspers H (eds) Origin of cerebral field potentials. Thieme, Stuttgart, pp 151–163Google Scholar
  26. Caspers H, Speckmann E-J, Lehmenkühler A (1980) Electrogenesis of cortical DC potentials. Prog Brain Res 54:3–15PubMedGoogle Scholar
  27. Caspers H, Speckmann E-J, Lehmenkühler A (1984) Electrogenesis of slow potentials of the brain. In: Elbert T, Rockstroh B, Lutzenberger W, Birbaumer N (eds) Self-regulation of the brain and behavior. Springer, Berlin Heidelberg New York, pp 27–41Google Scholar
  28. Caspers H, Speckmann E-J, Bingmann D, Lehmenkühler A (1986) Wirkungen von CO2 auf das Membranpotential einzelner Neurone. In: Grote J, Thews G (eds) Aktuelle Probleme der Atmungs-und Kreislaufregulation. Steiner, Stuttgart, pp 185–195 (Funktionsanalyse biologischer System, vol 15)Google Scholar
  29. Castelluci VF, Goldring S (1970) Contribution to steady potential shifts of slow depolarization in cells presumed to be glia. Electroencephalogr Clin. Neurophysiol 28:109–118CrossRefPubMedGoogle Scholar
  30. Caton R (1875) The electrical currents of the brain. Br Med J. 2:278Google Scholar
  31. Chalazonitis N (1963) Effects of changes in pCO2 and pO2 on rhythmic potentials from giant neurons. Ann NY Acad Sci 109:451–479PubMedGoogle Scholar
  32. Cohen MW (1974) Glial potentials and their contribution to extracellular recordings. In: Remond A (ed) Handbook of electroencephalography and clinical neurophysiology, vol 2/B. Elsevier, Amsterdam, pp 2B/43–2B/60Google Scholar
  33. Collewijn H, van Harreveld A (1966) Intracellular recording from cat spinal motoneurons during acute asphyxia. J Physiol (Lond) 185:1–14PubMedGoogle Scholar
  34. Cragg P, Patterson L, Purves MJ (1977) The pH of brain extracellular fluid in the cat. J Physiol (Lond) 272:137–166PubMedGoogle Scholar
  35. Creutzfeldt OD, Houchin J (1974) Neuronal basis of EEG waves. In: Remond A (ed) Handbook of electroencephalography and clinical neurophysiology, vol 2C. Elsevier, Amsterdam, pp 2C/5–2C/55Google Scholar
  36. Creutzfeldt OD, Kasamatsu A, Vaz-Ferreira A (1957) Aktivitätsänderungen einzelner corticaler Neurone im akuten Sauerstoffmangel und ihre Beziehungen zum EEG bei Katzen. Pflügers Arch 263:647–667CrossRefGoogle Scholar
  37. Davis H, Davis PA, Loomis AL, Harvey EN, Hobart G (1939) A search for changes in direct current potentials of the head during sleep. J Neurophysiol. 2:129–135Google Scholar
  38. Dichter M, Spencer WA (1969a) Penicillin-induced interictal discharge from the cat hippocampus. I. Characteristics and topographical feature. J Neurophysiol 32:649–662PubMedGoogle Scholar
  39. Dichter M, Spencer WA (1969b) Penicillin-induced interictal discharge from the cat hippocampus. II. Mechanism underlying origin and restriction. J Neurophysiol 32:663–687PubMedGoogle Scholar
  40. Dietzel I, Heinemann U, Hofmeier G, Lux HD (1980) Transient changes in the size of the extracellular space in the sensorimotor cortex of cats in relation to stimulus-induced changes in potassium concentration. Exp Brain Res 40:432–439CrossRefPubMedGoogle Scholar
  41. Dietzel I, Heinemann U, Hofmeier G, Lux HD (1982a) Changes in the extracellular volume in the cerebral cortex of cats in relation to stimulus-induced epileptiform afterdischarges. In: Klee MR, Lux HD, Speckmann E-J (eds) Physiology and pharmacology of epileptogenic phenomena. Raven, New York, pp 5–12Google Scholar
  42. Dietzel I, Heinemann U, Hofmeier G, Lux HD (1982b) Stimulus-induced changes in extracellular Na+ and Cl concentration in relation to changes in the size of the extracellular space. Exp Brain Res 46:73–84CrossRefPubMedGoogle Scholar
  43. Dora E, Zeuthen T (1976) Brain metabolism and ion movements in the brain cortex of the rat during anoxia. In: Kessler M, Clark LC Jr, Lübbers DW, Silver IA, Simon W (eds) Ion and enzyme electrodes in biology and medicine. Urban and Schwarzenberg, München, pp 294–298Google Scholar
  44. Eccles RM, Løyning Y, Oshima T (1966) Effects of hypoxia on the monosynaptic reflex pathway in the cat spinal cord. J Neurophysiol 29:315–332PubMedGoogle Scholar
  45. Eidelberg E, Meyerson BA (1964) Effects of lidocaine on cortical dendritic activity. Arch int Pharmacodyn. 147:576–858Google Scholar
  46. Eidelberg E, Kolmodin GM, Meyerson BA (1967) Effect of asphy xia on the cortical steady potential in adult and fetal sheep. Acta Physiol Scand 69:257–261PubMedGoogle Scholar
  47. Elger CE, Speckmann E-J (1980) Focal interictal epileptiform discharges (FIED) in the epicortical EEG and their relations to spinal field potentials in the rat. Electroencephalogr Clin Neurophysiol 48:447–460CrossRefPubMedGoogle Scholar
  48. Elger CE, Speckmann E-J (1983) Penicillin-induced epileptic foci in the motor cortex: vertical inhibition. Electroencephalogr Clin Neurophysiol 56:604–622CrossRefPubMedGoogle Scholar
  49. Elger CE, Speckmann E-J, Prohaska O, Caspers H (1981) Pattern of intracortical-potential distribution during focal interictal epileptiform discharges (FIED) and its relation to spinal field potentials in the rat. Electroencephalogr Clin Neurophysiol 51:393–402CrossRefPubMedGoogle Scholar
  50. Ferguson JH, Jasper HH (1971) Laminar DC studies of acetylcholine-activated epileptiform discharges in cerebral cortex. Electroencephalogr Clin Neurophysiol 30:377–390CrossRefPubMedGoogle Scholar
  51. Glötzner F (1967) Intracelluläre Potentiale, EEG and corticale Gleichspannung an der sensomotorischen Rinde der Katze bei akuter Hypoxie. Arch Psychiat Nervenkr 210:274–296CrossRefPubMedGoogle Scholar
  52. Godfraind JM, Kawamura H, Krnjevic K, Pumain R (1971) Actions of dinitrophenol and some other metabolic inhibitors on cortical neurons. J Physiol (Lond) 215:199–222PubMedGoogle Scholar
  53. Goldensohn ES, Schoenfeld RL, Hoefer PFA (1951) The slowly changing voltage of the brain and the elctroencephalogram. Electroencephalogr Clin Neurophysiol 3:231–236CrossRefPubMedGoogle Scholar
  54. Goldring S, O'Leary JL, Lam RL (1953) Effect of malononitril upon the electroencephalogram of the rabbit. Electroencephalogr Clin Neurophysiol 5:395–400CrossRefGoogle Scholar
  55. Gumnit R (1974a) Introduction and recording techniques. In: Remond A (ed) Handbook of electroencephalography and clinical neurophysiology, vol 10/A. Elsevier, Amsterdam, pp 10A/5–10A/11Google Scholar
  56. Gumnit R (1974b) DC shifts accompanying seizure activity. In: Remonad A (ed) Handbook of electroencephalography and clinical neurophysiology, vol 10/A. Elsevier, Amsterdam, pp 10A/66–10A/87Google Scholar
  57. Gumnit R (1979) Field potentials in partial seizures — a reappraisal. In: Speckmann E-J, Caspers H (eds) Origin of cerebral field potentials. Thieme, Stuttgart, pp 183–194Google Scholar
  58. Gumnit R, Takahashi T (1965) Changes in direct current activity during experimental focal seizures. Electroencephalogr Clin Neurophysiol 19:63–74CrossRefPubMedGoogle Scholar
  59. Gumnit R, Matsumoto H, Vasconetto C (1970) DC activity in the depth of an experimental focus. Electroencephalogr Clin Neurophysiol 28:333–339CrossRefPubMedGoogle Scholar
  60. Haider M, Groll-Knapp E, Ganglberger JA (1981) Event-related slow (DC) potentials in the human brain. Rev Physiol Biochem Pharmacol 88:125–197PubMedGoogle Scholar
  61. Hansen AJ (1985) Effect of anoxia on ion distribution in the brain. Physiol Rev 65:101–148PubMedGoogle Scholar
  62. Hansen AJ, Olsen CE (1980) Brain extracellular space during spreading depression and ischemia. Acta Physiol Scand 108:355–365PubMedGoogle Scholar
  63. Hansen AJ, Zeuthen T (1981) Extracellular ion concentration during spreading depression and ischemia in the rat brain cortex. Acta Physiol Scand 113:437–445PubMedGoogle Scholar
  64. Harris RJ, Symon L, Branston NM, Bayhan M (1981) Changes in extracellular calcium activity in cerebral ischaemia. J Cereb Blood Flow Metab 1:203–209PubMedGoogle Scholar
  65. Heinemann U, Lux HD (1977) Ceiling of stimulus induced rises in extracellular potassium concentration. Brain Res 120:231–249CrossRefPubMedGoogle Scholar
  66. Heinemann U, Lux HD, Gutnick J (1977) Extracellular free calcium and potassium during paroxysmal activity in the cerebral cortex of the cat. Exp Brain Res 27:237–243CrossRefPubMedGoogle Scholar
  67. Heinemann U, Lux HD, Gutnick J (1978) Changes in extracellular free calcium and postassium activity in the somatosensory cortex of cats. In: Chalazonitis N, Boisson M (eds) Abnormal neuronal discharges. Raven, New York, pp 329–345Google Scholar
  68. Heinemann U, Lux HD, Marciani MG, Hofmeier G (1979) Slow potentials in relation to changes in extracellular potassium activity in the cortex of cats. In: Speckmann E-J, Caspers H (eds) Origin of cerebral field potentials. Thieme, Stuttgart, pp 33–48Google Scholar
  69. Heinemann U, Konnerth A, Lux HD (1981) Stimulation induced changes in extracellular free calcium in normal cortex and chronic alumina cream foci of cats. Brain Res 213:246–250CrossRefPubMedGoogle Scholar
  70. Heinemann U, Konnerth A, Pumain R, Wadman WJ (1986) Extracellular calcium and potassium concentration changes in chronic epileptic brain tissue. Adv Neurol pp 641–661Google Scholar
  71. Hirsch H, Euler KH, Schneider M (1957) Über die Erholung und Wiederbelebung des Gehirns nach Ischämie bei Normothermie. Pflügers Arch 265:281–313CrossRefGoogle Scholar
  72. Hirsch H, Scholl H, Dickmans HA, Eisolt J, Gaehtgens P, Mann H, Krankenhagen B (1968a) Die corticale Gleichspannung des Hundegehirns bei Veränderung des arteriellen pO2 and pCO2. Pflügers Arch 301:344–350CrossRefGoogle Scholar
  73. Hirsch H, Scholl H, Dickmans HA, Eisolt, J, Gaehtgens P, Mann H, Krankenhagen B (1968b) Über die corticale Gleichspannung nach Überschreiten der Wiederbelebungszeit des Gehirns. Pflügers Arch 301:351–357CrossRefGoogle Scholar
  74. Hirsch H, Scholl H, Paschke KG, Schmid-Schönbein H (1968c) Die Veränderungen der corticalen Gleichspannung bei kompletter und inkompletter Ischämie des Gehirns. Pflügers Arch 301:334–343CrossRefGoogle Scholar
  75. Hossmann K-A (1982) Treatment of experimental cerebral ischemia. J Cereb Blood Flow Metab 2:275–297PubMedGoogle Scholar
  76. Hotson JR, Sypert GW, Ward AA (1973) Extracellular potassium concentration changes during propagated seizures in neocortex. Exp Neurol 38:20–26CrossRefPubMedGoogle Scholar
  77. Kempinsky WH (1954) Steady potential gradients in experimental cerebral occlusion. Electroencephalogr Clin Neurophysiol 6:375–388CrossRefGoogle Scholar
  78. Kirshner HS, Blank WF Jr, Myers RE (1976) Changes in cortical subarachnoid fluid potassium concentrations during hypoxia. Arch Neurol 33:84–90PubMedGoogle Scholar
  79. Köhler W, Held R, O'Connel DW (1982) An investigation of cortical currents. Proc Philos Soc 96:290–330Google Scholar
  80. Kolmodin GM, Skoglund CR (1959) Influence of asphyxia on membrane potential level and action potentials of spinal moto-and interneurons. Acta Physiol Scand 45:1–18Google Scholar
  81. Kraig RP, Ferreira-Filho CR, Nicholson C (1983) Alkaline and acid transients in cerebellar microenvironment. J Neurophysiol 49:831–850PubMedGoogle Scholar
  82. Labeyrie E, Koechlin Y (1979) Photoelectrode with a very short time-constant for recording intracerebrally Ca++ transients at a cellular level. J Neurosci Methods 1:35–39CrossRefPubMedGoogle Scholar
  83. Leao AAP (1944) Spreading depression of activity in the cerebral cortex. J Neurophysiol 7:359–390Google Scholar
  84. Leao AAP (1947) Further observations of the spreading depression of activity in the cerebral cortex. J Neurophysiol 10:409–414Google Scholar
  85. Lehmenkühler A, Speckmann E-J, Caspers H (1976) Cortical spreading depression in relation to potassium activity, oxygen tension, local flow and carbon dioxide tension. In: Kessler M, Clark LC Jr, Lübbers DW, Silver IA, Simon W (eds) Ion and enzyme electrodes in biology and medicine. Urban and Schwarzenberg, München, pp 311–315Google Scholar
  86. Lehmenkühler A (1979) Interrelationships between DC potentials, potassium activity, pO2 and pCO2 in the cerebral cortex of the rat. In: Speckmann E-J, Caspers H (eds) Origin of cerebral field potentials. Thieme, Stuttgart, pp 49–59Google Scholar
  87. Lehmenkühler A (1982) Transient alkaline shift in the cortical tissue pH during the onset of spreading depression and of anoxic negative DC potential shift. Pflügers Arch 394:R49Google Scholar
  88. Lehmenkühler A, Janus J (1978) Relation between local blood flow and extra-cellular potassium activity in the rat cerebral cortex during changes of pCO2. Arzneimittel forsch 28:871Google Scholar
  89. Lehmenkühler A, Bingmann D, Lange-Asschenfeldt H, Berges D (1978) Oxygen pressure and ictal activity in the cerebral cortex of artificially ventilated rats during exposure to oxygen high pressure. Adv Exp Med Biol 94:679–658Google Scholar
  90. Lehmenkühler A, Lensing J, Caspers H, Janus J (1979) Biphasic reaction of extracellular Ca++ activity during interictal discharges in the brain cortex. Pflügers Arch 382:R42Google Scholar
  91. Lehmenkühler A, Zidek W, Staschen M, Caspers H (1981) Cortical pH and pCa in relation to DC potential shifts during spreading depression and asphyxiation. In: Sykova E, Hnik P, Vyklicky L (eds) Ion-selective microelectrodes and their use in excitable tissues. Plenum, New York, pp 225–229Google Scholar
  92. Lehmenkühler A, Zidek W, Caspers H (1982a) Changes of extracellular Na+ and Cl activity in the brain cortex during seizure discharges. In: Klee MR, Lux HD, Speckmann E-J (eds) Physiology and pharmacology of epileptogenic phenomena. Raven, New York, pp 37–45Google Scholar
  93. Lehmenkühler A, Staschen M, Caspers H (1982b) Depth profile of extracellular pH in the brain cortex during seizure activity. Pflügers Arch 394:R50Google Scholar
  94. Lehmenkühler A, Caspers H, Kersting U (1984) Relations between DC potentials, ion activities and volume fraction in the extracellular space of the brain cortex with increasing pCO2. Electronencephalogr Clin Neurophysiol 58:91PGoogle Scholar
  95. Lehmenkühler A, Caspers H, Kersting U (1985) Relations between DC potentials, extracellular ion activites and extracellular volume fraction in the cerebral cortex with changes in pCO2. In: Kessler M, Harrison DK, Höper J (eds) Ion measurements in physiology and medicine. Springer, Berlin Heidelberg New York Tokyo, pp 199–205Google Scholar
  96. Lehmenkühler A, Kersting U, Richter A, Boerrigter P (1986) Relations of bioelectric activity, extracellular ion concentrations and extracellular volume in cortical epileptic foci. In: Speckmann E-J, Schulze H, Walden J (eds) Epilepsy and calcium. Urban and Schwarzenberg, Munch, pp 227–246Google Scholar
  97. Li C-L, Jasper HH (1953) Microelectrode studies of the electrical activity of the cerebral cortex in the cat. J Physiol (Lond) 121:117–140PubMedGoogle Scholar
  98. Libet B, Gerard RW (1941) Steady potential fields and neurone activity. J Neurophysiol 4:438–455Google Scholar
  99. Libet B, Gerard RW (1962) An analysis of some correlates of steady potentials in mammalian cerebral cortex. Electroencephalogr Clin Neurophysiol 14:445–452CrossRefPubMedGoogle Scholar
  100. Loeschcke HH (1956) Über den Einfluß von CO2 auf die Bestandpotentiale der Hirnhäute. Pflügers Arch 262:532–536CrossRefGoogle Scholar
  101. Loeschcke HH (1971) DC potentials between CSF and blood. In: Siesjö BK, Sørensen SC (eds) Ion homeostasis of the brain. Munksgaard, Copenhagen, pp 77–96 (Alfred Benzon Symposium III)Google Scholar
  102. Lux HD (1974) The kinetics of extracellular potassium: relation to epileptogenesis. Epilepsia 15:375–393PubMedGoogle Scholar
  103. Lux HD, Heinemann U (1983) Consequences of calcium electrogenesis for the generation of paroxysmal depolarization shift. In: Speckmann E-J, Elger CE (eds) Epilepsy and motor system. Urban & Schwarzenberg, München, pp 100–119Google Scholar
  104. Lux HD, Heinemann U, Dietzel I (1986) Ionic changes and alterations in the size of the extracellular space during epileptic activity. 44:619–639Google Scholar
  105. Matsumoto H, Ajmone-Marsan C (1964a) Cortical cellular phenomena in experimental epilepsy. Interictal manifestations. Exp Neurol 9:286–304CrossRefGoogle Scholar
  106. Matsumoto H, Ajmone-Marsan C (1946) Cortical cellular phenomena in experimental epilepsy. Ictal manifestations. Exp Neurol 9:305–326CrossRefGoogle Scholar
  107. Matsumoto H, Ayala GF, Gumnit RJ (1969) Neuronal behavior and triggering mechanism in cortical epileptic focus. J Neurophysiol 32:688–703PubMedGoogle Scholar
  108. Meyer JS, Denny-Brown D (1955) Studies of cerebral circulation in brain injury. I. Validity of continued local cerebral electropolarography, thermometry and steady potentials as an indicator of local circulatory and functional changes. Electroencephalogr Clin Neurophysiol 7:511–528CrossRefGoogle Scholar
  109. Monnier AM (1955) Die funktionelle Bedeutung der Dämpfung in der Nervenfaser. Ergeb Physiol 48:230–285PubMedGoogle Scholar
  110. Moody W, Futamachi KJ, Prince DA (1974) Extracellular potassium activity during epileptogenesis. Exp Neurol 42:248–263CrossRefPubMedGoogle Scholar
  111. Morris ME (1974) Hypoxia and extracellular potassium activity in the guinea-pig cortex. Can J Physiol Pharmacol 52:872–882PubMedGoogle Scholar
  112. Mutch WAC, Hansen AJ (1984) Extracellular pH changes during spreading depression and cerebral ischemia: mechanisms of brain pH regulation. J Cereb Blood Flow Metab 4:17–27PubMedGoogle Scholar
  113. Mutch WAC, Hansen AJ (1985) Brain extracellular pH changes during alterations in substrate supply. In: Kessler M, Harrison DK, Höper J (eds) Ion measurements in physiology and medicine. Springer, Berlin Heidelberg New York Tokyo, pp 189–193Google Scholar
  114. Neher E, Lux HD (1973) Rapid changes of potassium concentration at the outer surface of exposed single neurons during membrane current flow. J Gen Physiol 61:385–399CrossRefPubMedGoogle Scholar
  115. Nelson PG, Frank K (1963) Intracellularly recorded responses of nerve cells to oxygen deprivation. Am J Physiol 205:208–212PubMedGoogle Scholar
  116. Nicholson C (1980) Modulation of extracellular calcium and its functional implications. Federation Proc 39:1519–1523Google Scholar
  117. Nicholson C, Kraig RP (1981) The behavior of extracellular ions during spreading depression. In: Zeuthen T (ed) The application of ion-selective microelectrodes, Elsevier, Amsterdam, pp 217–238Google Scholar
  118. Nicholson C, Phillips JM (1981) Ion diffusion modified by tortuosity and volume fraction in the extracellular microenvironment of the rat cerebellum. J Physiol (Lond) 321:225–257PubMedGoogle Scholar
  119. Nicholson C, Kraig RP, Ferreira-Filho CR, Thompson P (1985) Hydrogen ion variations and their interpretation in the microenvironment of the vertebrate brain. In: Kessler M, Harrison DK, Höper J (eds) Ion measurements in physiology and medicine. Springer, Berlin Heidelberg New York Tokyo, pp 229–235Google Scholar
  120. Niechaj A, van Harrefeld A (1968) Intracellular recording from cat's spinal interneurons during asphyxiation. Brain Res 8:54–64CrossRefPubMedGoogle Scholar
  121. O'Leary JL, Goldring S (1964) DC potentials of the brain. Physiol Rev 44:91–125PubMedGoogle Scholar
  122. O'Leary JL, Goldring S (1976) Science and epilepsy. Neuroscience gains in epilepsy research. Raven, New YorkGoogle Scholar
  123. Prince DA (1974) Neuronal correlates of epileptiform discharges and cortical DC potentials. In: Rémond A (ed) Handbook of electroencephalography and clinical neurophysiology, vol 2/C. Elsevier, Amsterdam, pp 2C/56–2C/70Google Scholar
  124. Prince DA, Wilder BJ (1967) Control mechanism in cortical epileptogenic foci; “surround inhibition”. Arch Neurol 16:194–202PubMedGoogle Scholar
  125. Prince DA, Lux HD, Neher E (1973) Measurement of extracellular potassium activity in cat cortex. Brain Res 50:489–495CrossRefPubMedGoogle Scholar
  126. Prince DA, Pedley TA, Ransom BR (1978) Fluctuations in ion concentrations and seizures. In: Schoffeniels E, Franck G, Tower DB, Hertz L (eds) Dynamic properties of glia cells. Pergamon, Oxford, pp 281–303Google Scholar
  127. Pumain R, Kurcewicz I, Louvel J (1983) Fast extracellular calcium transients: involvement in epileptic processes. Science 222:177–179PubMedGoogle Scholar
  128. Rémond A (ed) (1974) Handbook of electroenphalography and clinical neurophysiology, vol 10/A. Elsevier, AmsterdamGoogle Scholar
  129. Schneider MA Überlebens-und Wiederbelebungszeit von Gehirn, Herz, Leber, Niere nach Ischämie und Anoxie. Westdeutscher Verlag, CologneGoogle Scholar
  130. Siesjö K, von Hanwehr R, Norgelius G, Nevander G, Ingvar M (1985) Extra-and intracellular pH in brain during seizures and in the recovery period following the arrest of seizure activity. J Cereb Blood Flow Metab 5:47–57PubMedGoogle Scholar
  131. Somjen GG (1975) Electrophysiology of neuroglia. Annu Rev Physiol 37:163–190CrossRefPubMedGoogle Scholar
  132. Somjen GG (1979) Extracellular potassium in the mammlian central nervous system. Annu Rev Physiol 41:159–177CrossRefPubMedGoogle Scholar
  133. Somjen GG (1980) Stimulus-evoked and seizure-related responses of extracellular calcium activity in spinal cord compared to those in the cerebral cortex. J Neurophysiol 44:617–632PubMedGoogle Scholar
  134. Somjen GG (1984) Interstitial ion concentration and the role of neuroglia in seizures. In: Schwartzkroin PA, Wheal HV (eds) Electrophysiology of epilepsy. Academic, London, pp 302–341Google Scholar
  135. Somjen GG, Aitken PG, Giacchino JL, McNamara JO (1986) Interstitial ion concentration and paroxysmal discharges in hippocampal formation and spinal cord. Neurol 44:663–680Google Scholar
  136. Speckmann E-J, Caspers H (1966) Die sogenannte anoxische Terminaldepolarisation und ihre Beziehung zur Wiederbelebungszeit des Gehirns. Pflügers Arch 289:R2Google Scholar
  137. Speckmann E-J, Caspers H (1967) Les modifications du potentiel continu cortical pendant l'arret respiratoire. Rev Neurol (Paris) 117:5–19PubMedGoogle Scholar
  138. Speckmann E-J, Caspers H (1969) Verschiebungen des corticalen Bestandpotentials bei Veränderungen der Ventilationsgröße. Pflügers Arch 310:235–250CrossRefGoogle Scholar
  139. Speckmann E-J, Caspers H (1974) The effect of O2 and CO2 tensions in the nervous tissue on neuronal activity and DC potential. In: Rémond A (ed) Handbook of electroencephalography and clinical neurophysiology, vol 2/C. Elsevier, Amsterdam, pp 2C/71–2C/89Google Scholar
  140. Speckmann E-J, Elger CE (1982) Neurophysiological basis of the EEG and of DC potentials. In: Niedermeyer E, Lopes da Silva F (eds) Electroencephalography. Basc principles, clinical applications and related fields. Urban and Schwarzenberg, München, pp 1–13Google Scholar
  141. Speckmann E-J, Caspers H, Sokolov W (1970) Aktivitätsänderungen spinaler Neurone während und nach einer Asphyxie. Pflügers Arch 319:122–138CrossRefGoogle Scholar
  142. Speckmann E-J, Caspers H, Janzen RWC (1972) Relations between cortical DC shifts and membrane potential changes of cortical neurons associated with seizure activity. In: Petsche H, Brazier MAB (eds) Synchronization of EEG activity in epilepsies. Springer, New York, pp 93–111Google Scholar
  143. Speckmann E-J, Caspers H, Janzen RWC (1978) Laminar distribution of cortical field potentials in relation to neuronal activities during seizure discharges. In: Brazier MAB, Petsche H (eds) Architectonics of the cerebral cortex. Raven, New York, pp 191–209Google Scholar
  144. Staschen M, Zidek W, Lehmenkühler A, Caspers H (1981) Changes of extracellular ion activities (K+, Na+, Ca2+, H+, Cl) in relation to cortical DC potential shifts during reversible asphyxia. Pflügers Arch 389:R33Google Scholar
  145. Sugaya E, Goldring S and O'Leary JL (1964) Intracellular potentials associated with direct cortical response and seizure discharge in cat. Electroencephalogr Clin Neurophysiol 17:661–669CrossRefPubMedGoogle Scholar
  146. Thomas RC (1976) The effect of carbon dioxide on the intracellular pH and buffering power of snail neurones. J Physiol (Lond) 255:715–735PubMedGoogle Scholar
  147. Thomas RC, Meech RW (1982) Hydrogen ion currents and intracellular pH in depolarized voltage-clamped snail neurones. Nature 299:826CrossRefPubMedGoogle Scholar
  148. Tschirgi RD, Taylor JL (1958) Slowly changing bioelectric potentials associated with the blood-brain barrier. Am J Physiol 195:7–22PubMedGoogle Scholar
  149. Urbanics R, Leninger-Follert E, Lübbers DW (1978) Time course of changes of extracellular H+ and K+ activities during and after direct electrical stimulation of the brain cortex. Pflügers Arch 378:47–53CrossRefGoogle Scholar
  150. Van Harreveld A, Stamm JS (1953a) Spreading cortical convulsions and depressions. J Neurophysiol 16:352–366PubMedGoogle Scholar
  151. Van Harreveld A, Stamm JS (1953b) Cerebral asphyxiation and spreading cortical depression. Am J Physiol 173:171–175PubMedGoogle Scholar
  152. Vyskocil F, Kriz A, Bures J (1972) Potassium selective microelectrodes used for measuring the extracellular brain potassium during spreading depression and anoxic depolarization in rats. Brain Res 39:255–259CrossRefPubMedGoogle Scholar
  153. Washizu Y (1960) Effect of CO2 and pH on the responses of spinal motoneurons. Brain Nerve 12:757–766Google Scholar
  154. Withrow CD (1972) Systemic carbon dioxide derangement. In: Purpura DP, Kiffin Penry J, Tower DB, Woodbury DM, Walter (eds) Experimental models of epilepsy. Raven, New York, pp 477–494Google Scholar
  155. Woody CD, Marshall WH, Besson JM, Thompson HK, Aleonard P, Albe-Fessard D (1970) Brain potential shift with respiratory acidosis in the cat and monkey. Am J Physiol 218:275–283PubMedGoogle Scholar
  156. Wurtz RH, O'Flaherty JJ (1967) Physiological correlates of steady potential shifts during sleep and wekefulness. I. Sensitivity of the stady potential to alterations in carbon dioxide. Electroencephalogr Clin Neurophysiol 22:30–42CrossRefPubMedGoogle Scholar
  157. Zidek W, Lehmenkühler A, Caspers H, Lange-Asschenfeldt H (1978) Macromolecular buffering reverses the CO2 effect on the membrane potential in snail neurons. Pflügers Arch 377:R43Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Heinz Caspers
    • 1
  • Erwin-Josef Speckmann
    • 1
  • Alfred Lehmenkühler
    • 1
  1. 1.Institute of PhysiologyUniversity of MünsterMünsterFRG

Personalised recommendations