Advertisement

Gaze stabilization in the primate

The interaction of the vestibulo-ocular reflex, optokinetic nystagmus, and smooth pursuit
  • Walter Waespe
  • Volker Henn
Chapter
Part of the Reviews of Physiology, Biochemistry and Pharmacology book series (volume 106)

Keywords

Smooth Pursuit Vestibular Nucleus Vestibular Neuron Stimulus Velocity Optokinetic Nystagmus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abend WK (1977) Functional organization of the superior vestibular nucleus of the squirrel monkey. Brain Res 132:65–84CrossRefPubMedGoogle Scholar
  2. Adler B, Collewijn H, Curio G, Grüsser O-J, Pause M, Schreiter U, Weiss L (1981) Sigma-movement and sigma-nystagmus: a new tool to investigate the gaze-pursuit system and visual-movement perception in man and monkey. Ann NY Acad Sci 374:284–302PubMedGoogle Scholar
  3. Albus K, Donate-Oliver F, Sanides D, Fries W (1981) The distribution of pontine projection cells in visual and association cortex of the cat: an experimental study with horseradish peroxidase. J Comp Neurol 201:175–189CrossRefPubMedGoogle Scholar
  4. Allum JHJ, Graf W, Dichgans J, Schmidt CL (1976) Visual-vestibular interactions in the vestibular nuclei of the goldfish. Exp Brain Res 26:463–485CrossRefPubMedGoogle Scholar
  5. Angaut P, Brodal A (1967) The projection of the “vestibulocerebellum” onto the vestibular nuclei in the cat. Arch Ital Biol 105:441–479PubMedGoogle Scholar
  6. Aschan G, Eksall L, Grant G (1964) Nystagmus following stimulation in the central vestibular pathways using permanent implanted electrodes. Acta Otolaryngol Suppl 192:63–77Google Scholar
  7. Atkinson J (1979) Development of optokinetic nystagmus in the human infant and monkey infant: an analogue to development in kittens. In: Freeman RD (ed) Developmental Neurobiology of Vision. NATO Advanced Study Institute Series: Series A, Life Sciences. Plenum, New York, pp 277–287Google Scholar
  8. Bach M, Bouis D, Fischer B (1983) An accurate and linear infrared oculometer. J Neurosci Methods 9:9–14CrossRefPubMedGoogle Scholar
  9. Baker J, Gibson A, Glickstein M, Stein J (1976) Visual cells in the pontine nuclei of the cat. J Physiol (Lond) 255:415–433PubMedGoogle Scholar
  10. Baker R, Berthoz A (1975) Is the prepositus hypoglossi nucleus the source of another vestibular ocular pathway? Brain Res 86:121–127CrossRefPubMedGoogle Scholar
  11. Baker R, Berthoz A (eds) (1977) Control of gaze by brain stem neurons. Dev Neurosci vol 1. Elsevier, AmsterdamGoogle Scholar
  12. Balaban CD (1983) A projection from nucleus reticularis tegmenti pontis of Bechterew to the medial vestibular nucleus in rabbits. Exp Brain Res 51:304–309CrossRefPubMedGoogle Scholar
  13. Balaban CD, Watanabe E (1984) Functional representation of eye movements in the flocculus of monkeys (Macaca fuscata). Neurosci Lett 49:199–205CrossRefPubMedGoogle Scholar
  14. Balaban CD, Ito M, Watanabe E (1981) Demonstration of zonal projections from the cerebellar flocculus to vestibular nuclei in monkeys (Macaca fuscata). Neurosci Lett 27:101–105CrossRefPubMedGoogle Scholar
  15. Baloh RW, Henn V, Jaeger J (1982) Habituation of the human vestibulo-ocular reflex by low frequency harmonic acceleration. Am J Otolaryngol 3:235–241PubMedGoogle Scholar
  16. Barmack NH (1970) Dynamic visual acuity as an index of eye movement control. Vision Res 10:1377–1391CrossRefPubMedGoogle Scholar
  17. Barmack NH, Pettorossi VE (1985) Effects of unilateral lesions of the flocculus on optokinetic and vestibuloocular reflexes of the rabbit. J Neurophysiol 53:481–496PubMedGoogle Scholar
  18. Barnes GR, Benson AJ, Prior ARJ (1978) Visual-vestibular interaction in the control of eye movement. Aviat Space Environ Med 49:557–564PubMedGoogle Scholar
  19. Barr CC, Schultheis LW, Robinson DA (1976) Voluntary, non-visual control of the human vestibulo-ocular reflex. Acta Otolaryngol 81:365–375PubMedGoogle Scholar
  20. Behrens F, Grüsser O-J (1982) On the additivity of sigma-and phi-movement in visual perception and oculomotor control. Human Neurobiol 1:121–127Google Scholar
  21. Bender MB, Shanzer S (1983) History of optokinetic nystagmus. Neuro Ophthalmol 3:73–88Google Scholar
  22. Benevento LA, Rezak M, Santos-Anderson R (1977) An autoradiographic study of the projections of the pretectum in the rhesus monkey (Macaca mulatta): evidence for sensorimotor links to the thalamus and oculomotor nuclei. Brain Res 127:197–218CrossRefPubMedGoogle Scholar
  23. Berman N (1977) Connections of the pretectum in the cat. J Comp Neurol 174:227–254CrossRefPubMedGoogle Scholar
  24. Berthoz A, Melvill-Jones (eds) (1985) Adaptive mechanisms in gaze control — facts and theories. Reviews of oculomotor research, vol 1. Elsevier, AmsterdamGoogle Scholar
  25. Blanks RHI, Precht W (1983) Responses of units in the rat cerebellar flocculus during optokinetic and vestibular stimulation. Exp Brain Res 53:1–15CrossRefPubMedGoogle Scholar
  26. Blanks RHI, Estes MS, Markham C (1975) Physiologic characteristics of vestibular first-order canal neurons in the cat. II. Response to constant angular acceleration. J Neurophysiol 38:1250–1268PubMedGoogle Scholar
  27. Blanks RHI, Volkind R, Precht W, Baker R (1977) Responses of cat prepositus hypoglossi neurons to horizontal angular acceleration. Neurosci 2:391–403CrossRefGoogle Scholar
  28. Blanks RHI, Precht W (1978) Response properties of vestibular afferents in alert cats during optokinetic and vestibular stimulation. Neurosci Lett 10:225–229CrossRefGoogle Scholar
  29. Blanks RHI, Precht W, Torigoe Y (1983) Afferent projections to the cerebellar flocculus in the pigmented rat demonstrated by retrograde transport of horseradish peroxidase. Exp Brain Res 52:293–306CrossRefPubMedGoogle Scholar
  30. Blanks RHI, Curthoys IS, Bennett ML, Markham CH (1985) Planar relationships of the semicircular canals in rhesus and squirrel monkeys. Brain Res 340:315–324CrossRefPubMedGoogle Scholar
  31. Böhmer A, Henn V (1983) Horizontal and vertical vestibulo-ocular and cervico-ocular reflexes in the monkey during high frequency rotation. Brain Res 277:241–248CrossRefPubMedGoogle Scholar
  32. Böhmer A, Henn V, Suzuki J-I (1985) Vestibulo-ocular reflexes after selective plugging of the semicircular canals in the monkey. Response plane determinations. Brain Res 326:291–298CrossRefPubMedGoogle Scholar
  33. Bond HW, Ho P (1970) Solid miniature silver-silver chloride electrodes for chronic implantation. Electronencephalogr Clin Neurophysiol 28:206–208CrossRefGoogle Scholar
  34. Boyle R, Büttner U, Markert G (1985) Vestibular nuclei activity and eye movements in the alert monkey during sinusoidal optokinetic stimulation. Exp Brain Res 57:362–369CrossRefPubMedGoogle Scholar
  35. Brodal A (1954) Afferent cerebellar connections. In: Jansen J, Brodal A (eds) Aspects of cerebellar anatomy. JS Tanum, Oslo, pp 82–188Google Scholar
  36. Brodal A (1972) Some features in the anatomical organization of the vestibular nuclear complex in the cat. In: Brodal A, Pompeiano O (eds) Basic aspects of central vestibular mechanisms, Prog Brain Res, vol 37. Elsevier, Amsterdam pp 31–53Google Scholar
  37. Brodal A (1981) Neurological anatomy. Oxford University Press, OxfordGoogle Scholar
  38. Brodal A (1983) The periphypoglossal nuclei in the macaque monkey and the chimpanzee. J Comp Neurol 218:257–269CrossRefPubMedGoogle Scholar
  39. Brodal A (1984) The vestibular nuclei in the macaque monkey. J Comp Neurol 227:252–266CrossRefPubMedGoogle Scholar
  40. Brodal A, Drahløs PA (1963) Two types of mossy fiber terminals in the cerebellum and their regional distribution. J Comp Neurol 121:173–187CrossRefPubMedGoogle Scholar
  41. Brodal A, Høivik B (1964) Site and mode of termination of primary vestibulocerebellar fibres in the cat. An experimental study with silver impregnation methods. Arch Ital Biol 102:1–21PubMedGoogle Scholar
  42. Brodal A, Brodal P (1985) Observations on the secondary vestibulocerebellar projections in the macaque monkey. Exp Brain Res 58:62–79CrossRefPubMedGoogle Scholar
  43. Brodal P (1978) The corticopontine projection in the rhesus monkey: origin and principles of organisation. Brain 101:251–283PubMedGoogle Scholar
  44. Brodal P (1982) Further observations on the cerebellar projections from the pontine nuclei and the nucleus reticularis pontis in the rhesus monkey. J Comp Neurol 204:44–55CrossRefPubMedGoogle Scholar
  45. Brodal P, Brodal A (1982) Further observations on the olivocerebellar projection in the monkey. Exp Brain Res 45:71–83CrossRefPubMedGoogle Scholar
  46. Buettner UW, Büttner U (1979) Vestibular nuclei activity in the alert monkey during suppression of vestibular and optokinetic nystagmus. Exp Brain Res 37:581–593CrossRefPubMedGoogle Scholar
  47. Buettner UW, Büttner U, Henn V (1978) Transfer characteristics of neurons in vestibular nuclei of the alert monkey. J Neurophysiol 41:1614–1628PubMedGoogle Scholar
  48. Buettner UW, Henn V, Young LR (1981) Frequency response of the vestibulo-ocular reflex (VOR) in the monkey. Aviat Space Environment Med 52:73–77Google Scholar
  49. Buizza A, Schmid R (1982) Visual-vestibular interaction in the control of eye movement: mathematical modeling and computer stimulation. Biol Cybern 43:209–223CrossRefPubMedGoogle Scholar
  50. Bushnell MC, Goldberg ME, Robinson DL (1981) Behavioral enhancement of visual responses in monkey cerebral cortex. I. Modulation in posterior parietal cortex related to selective visual attention. J Neurophysiol 46:755–772PubMedGoogle Scholar
  51. Büttner U, Waespe W (1981) Vestibular nerve activity in the alert monkey during vestibular and optokinetic nystagmus. Exp Brain Res 41:310–315CrossRefPubMedGoogle Scholar
  52. Büttner U, Waespe W (1984) Purkinje cell activity in the primate flocculus during optokinetic stimulation, smooth pursuit eye movements and VOR-suppression. Exp Brain Res 55:97–204CrossRefPubMedGoogle Scholar
  53. Büttner U, Meienberg D, Schimmelpfennig B (1983) The effect of central retinal lesions on optokinetic nystagmus in the monkey. Exp Brain Res 52:248–256CrossRefPubMedGoogle Scholar
  54. Cannon SC, Robinson DA (1986) The final common integrator is in the prepositus and vestibular nuclei. In: Keller EL, Zee DS (eds) Adaptive processes in visual and oculomotor systems. Pergamon Press pp 307–311Google Scholar
  55. Carleton SC, Carpenter MB (1983) Afferent and efferent connections of the medial, inferior and lateral vestibular nuclei in the cat and monkey. Brain Res 278:29–51CrossRefPubMedGoogle Scholar
  56. Carleton SC, Carpenter MB (1984) Distribution of primary vestibular fibers in the brainstem and cerebellum of the monkey. Brain Res 294:281–298CrossRefPubMedGoogle Scholar
  57. Carpenter MB, Stein BM, Peter P (1972) Primary vestibulocerebellar fibers in the monkey: distribution of fibers arising from distinctive cell groups of the vestibular ganglia. Am J Anat 135:221–250CrossRefPubMedGoogle Scholar
  58. Cazin L, Precht W, Lannou J (1982) Non-cerebellar visual afferents to the vestibular nuclei involving the prepositus hypoglossal complex: an autoradiographic study in the rat. Exp Brain Res 48:309–313CrossRefPubMedGoogle Scholar
  59. Cheron G, Gillis P, Godaux E (1986a) Lesions in the cat prepositus complex: effects on the optokinetic system. J Physiol 372:95–111PubMedGoogle Scholar
  60. Cheron G, Godaux E, Laune JM, Vanderkelen B (1986b) Lesions in the cat prepositus complex: effects on the vestibulo-ocular reflex and saccades. J Physiol (Lond) 372:75–94PubMedGoogle Scholar
  61. Chubb MC, Fuchs AF, Scudder CA (1984) Neuron activity in monkey vestibular nuclei during vertical vestibular stimulation and eye movements. J Neurophysiol 52:724–742PubMedGoogle Scholar
  62. Cohen B (1974) The vestibulo-ocular reflex arc. In: Kornhuber HH (ed) Handbook of sensory physiology. Springer, Berlin Heidelberg New York, pp 478–540Google Scholar
  63. Cohen B (ed) (1981) Vestibular and oculomotor physiology. Ann NY Acad Sci 374, New YorkGoogle Scholar
  64. Cohen B, Uemura T, Takemori S (1973) Effects of labyrinthectomy on optokinetic nystagmus (OKN) and optokinetic after-nystagmus (OKAN). Equilibrium Res 3:88–93Google Scholar
  65. Cohen B, Matsuo V, Raphan T (1977) Quantitative analysis of the velocity characteristics of optokinetic nystagmus and optokinetic after-nystagmus. J Physiol (Lond) 270:321–344PubMedGoogle Scholar
  66. Cohen B, Henn V, Raphan T, Dennett D (1981) Velocity storage, nystagmus, and visual-vestibular interactions in humans. Ann NY Acad Sci 374:421–433PubMedGoogle Scholar
  67. Cohen B, Suzuki J-I, Raphan T (1983) Role of the otolith organs in generation of horizontal nystagmus: effects of selective labyrinthine lesions. Brain Res 276:159–164CrossRefPubMedGoogle Scholar
  68. Collewijn H (1975) Direction selective units in the rabbit's nucleus of the optic tract. Brain Res 100:489–508CrossRefPubMedGoogle Scholar
  69. Collewijn H (1977) Eye-and head movements in freely moving rabbits. J Physiol (Lond) 266:471–498PubMedGoogle Scholar
  70. Collewijn H (1981) The oculomotor system of the rabbit and its plasticity. In: Braitenberg et al. (eds) Studies brain function. Springer, Berlin Heidelberg New YorkGoogle Scholar
  71. Collewijn H, Tamminga EP (1984) Human smooth and saccadic eye movements during voluntary pursuit of different target motions on different backgrounds. J Physiol (Lond) 351:217–250PubMedGoogle Scholar
  72. Collewijn H, Conijn P, Martins AJ, Tamminga EP, Van Die GC (1982) Control of gaze in man: synthesis of pursuit, optokinetic and vestibulo-ocular systems. In: Roucoux A, Crommelinck M (eds) Physiological and pathological aspects of eye movements. W Junk, The Hague, pp 3–22Google Scholar
  73. Conway JL, Timberlake GT, Skavenski AA (1981) Oculomotor changes in cats reared without experiencing continuous retinal image motion. Exp Brain Res 43:229–232CrossRefPubMedGoogle Scholar
  74. Curthoys IS, Markham CH (1971) Convergence of labyrinth influences on units in the vestibular nuclei of the cat. I. Natural stimulation. Brain Res 35:469–490CrossRefPubMedGoogle Scholar
  75. Cynader M (1985) Effects of visual deprivation on properties and modifiability of compensatory eye movement systems. In: Berthoz A, Melvill Jones G (eds) Adaptive mechanisms in gaze control — facts and theories. Amsterdam, Elsevier, pp 95–109Google Scholar
  76. Cynader M, Chernenko G (1976) Abolition of direction selectivity in the visual cortex of the cat. Science 193:504–505PubMedGoogle Scholar
  77. Demer JL, Robinson DA (1983) Different time constants for optokinetic and vestibular nystagmus with a single velocity storage element. Brain Res 276:173–177CrossRefPubMedGoogle Scholar
  78. Dichgans J, Bizzi E, Morasso P, Tagliasco V (1973a) Mechanisms underlying recovery of eye-head coordination following bilateral labyrinthectomy in monkeys. Exp Brain Res 18:548–562PubMedGoogle Scholar
  79. Dichgans J, Schmidt CL, Graf W (1973b) Visual input improves the speedometer function of the vestibular nuclei in the goldfish. Exp Brain Res 18:319–322PubMedGoogle Scholar
  80. Dieringer N, Precht W (1982) Dynamics of compensatory vestibular reflexes in the grassfrog, Rana temporaria. In: Roucoux A, Crommelinck M (eds) Physiological and pathological aspects of eye movements. W Junk, The Hague, pp 417–423Google Scholar
  81. Dodge R (1923) Adequacy of reflex compensatory eye movements including the effects of neural rivalry and competition. J Exp Psychol 6:169–181Google Scholar
  82. Dow RS (1935) The relation of the paraflocculus to movements of the eyes. Am J Physiol 113:296–298Google Scholar
  83. Dow RS (1936) The fiber connections of the posterior parts of the cerebellum in the rat and cat. J Comp Neurol 63:527–548CrossRefGoogle Scholar
  84. Dow RS (1938) Efferent connections of the flocculo-nodular lobe in Macaca mulatta. J Comp Neurol 68:279–305CrossRefGoogle Scholar
  85. Dubois MFW, Collewijn H (1979) Optokinetic reactions in man elicited by localized retinal motion stimuli. Vision Res 19:1105–1115CrossRefPubMedGoogle Scholar
  86. Duensing F, Schaefer K-P (1958) Die Aktivität einzelner Neurone im Bereich der Vestibulariskerne bei Horizontalbeschleunigungen unter besonderer Berücksichtigung des vestibulären Nystagmus. Arch Psychiat Nervenkr 198:225–252CrossRefPubMedGoogle Scholar
  87. Duensing F, Schaefer K-P (1960) Die Aktivität einzelner Neurone der Formatio reticularis des nicht gefesselten Kaninchens bei Kopfwendungen und vestibulären Reizen. Arch Psychiat Nervenkr 201:97–122CrossRefPubMedGoogle Scholar
  88. Eccles JC, Ito M, Szentagothai J (1967) The cerebellum as a neuronal machine. Springer, Berlin Heidelberg New YorkGoogle Scholar
  89. Eckmiller R, Mackeben M (1980) Pre-motor single unit activity in the monkey brain stem correlated with eye velocity during pursuit. Brain Res 184:210–214CrossRefPubMedGoogle Scholar
  90. Epema AH, Guldemond JM, Voogd J (1985) Reciprocal connections between the caudal vermis and the vestibular nuclei in the rabbit. Neurosci Lett 57:273–278CrossRefPubMedGoogle Scholar
  91. Estanol B, Romero R, Corvery J (1979) Effects of cerebellectomy on eye movements in main. Arch Neurol 36:281–284PubMedGoogle Scholar
  92. Ewald JR (1892) Physiologische Untersuchungen über das Endorgan des Nervus octavus. Bergmann, WiesbadenGoogle Scholar
  93. Fernandez C, Frederickson JM (1964) Experimental cerebellar lesions and their effect on vestibular function. Acta Otolaryngol Suppl 192:52–62Google Scholar
  94. Fernandez C, Goldberg JM (1971) Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. II. Response to sinusoidal stimulation and dynamics of peripheral vestibular system. J Neurophysiol 34:661–675PubMedGoogle Scholar
  95. Flandrin JM, Courjon JH, Jeannerod M, Schmid R (1983) Effects of unilateral flocculus lesions on vestibulo-ocular responses in the cat. Neurosci 8:809–817CrossRefGoogle Scholar
  96. Fuchs AF (1967) Saccadic and smooth pursuit eye movements in the monkey. J Physiol (Lond) 191:609–631PubMedGoogle Scholar
  97. Fuchs AF, Becker W (eds) (1981) Progress in oculomotor research. Dev Neurosci 12. Elsevier, AmsterdamGoogle Scholar
  98. Fuchs AF, Kimm P (1975) Unit activity in vestibular nuclei of the alert monkey during horizontal angular acceleration and eye movement. J Neurophysiol 38:1140–1161PubMedGoogle Scholar
  99. Furman JM, O'Leary DP, Wolfe JW (1982) Dynamic range of the frequency response of the horizontal vestibulo-ocular reflex of the alert rhesus monkey. Acta Otolaryngol 93:81–91PubMedGoogle Scholar
  100. Gacek RR (1969) The course and central termination of first oder neurons supplying vestibular end organs in the cat. Acta Otolaryngol Suppl 254:1–66PubMedGoogle Scholar
  101. Gacek RR, Lyon M (1974) Localization of vestibular efferent neurons in the kitten with horseradish perxoidase. Acta Otolaryngol 77:92–101PubMedGoogle Scholar
  102. Gacek RR, Rasmussen GL (1961) Fiber analysis of the stato-acoustic nerve of the guinea pig, cat, and monkey. Anat Rec 139:445–463CrossRefGoogle Scholar
  103. Galiana HL (1986) A new approach to understanding adaptive visual-vestibular interactions in the central nervous system. J Neurophysiol 55:349–377PubMedGoogle Scholar
  104. Gardner EP, Fuchs AF (1975) Single-unit responses to natural vestibular stimuli and eye movements in deep cerebellar nuclei of the alert rhesus monkey. J Neurophysiol 38:627–649PubMedGoogle Scholar
  105. Gerrits NM, Epema AH, Voogd J (1984) The mossy fiber projection of the nucleus reticularis tegmenti pontis to the flocculus and adjacent ventral paraflocculus in the cat. Neurosci 11:627–644CrossRefGoogle Scholar
  106. Giolli RA (1963) An experimental study of the accessory optic system in the cynomolgus monkey. J Comp Neurol 121:89–107CrossRefPubMedGoogle Scholar
  107. Glickstein M, May JG III (1982) Visual control of movement: the circuits which link visual input to the pons and cerebellum. In: Neff WD (ed) Contributions to sensory physiology. Academic Press, New York, pp 103–145Google Scholar
  108. Glickstein M, Stein J, King RA (1972) Visual input to the pontine nuclei. Science 178:1110–1111Google Scholar
  109. Glickstein M, Cohen JL, Dixon B, Gibson A, Hollins M, Labossiere E, Robinson F (1980) Corticopontine visual projections in macaque monkeys. J Comp Neurol 190:209–229CrossRefPubMedGoogle Scholar
  110. Godaux E, Vanderkelen B (1984) Vestibulo-ocular reflex, optokinetic response and their interactions in the cerebellectomized cat. J Physiol (Lond) 346:155–170PubMedGoogle Scholar
  111. Goldberg JM, Fernandez C (1971a) Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. I. Resting discharge and response to constant angular accelerations. J Neurophysiol 34:635–660PubMedGoogle Scholar
  112. Goldberg JM, Fernandez C (1971b) Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. III. Variations among units in their discharge properties. J Neurophysiol 34:676–684Google Scholar
  113. Goldberg JM, Fernandez C (1975) Vestibular mechanisms. Ann Rev Physiol 37:129–162CrossRefGoogle Scholar
  114. Goldberg JM, Fernandez C (1980) Efferent vestibular system in the squirrel monkey: anatomical location and influence on afferent activity. J Neurophysiol 43:986–1025PubMedGoogle Scholar
  115. Goldberg JM, Fernandez C (1982) Eye movements and vestibular-nerve responses produced in the squirrel monkey by rotations about an earth-horizontal axis. Exp Brain Res 46:393–402CrossRefPubMedGoogle Scholar
  116. Grasse KL, Cynader MS (1984) Electrophysiology of lateral and dorsal terminal nuclei of the cat accessory optic system. J Neurophysiol 51:276–293PubMedGoogle Scholar
  117. Grüsser O-J, Pause M, Schreiter U (1979) Three methods to elicit Sigma-optokinetic nystagmus in Java monkeys. Exp Brain Res 35:519–526CrossRefPubMedGoogle Scholar
  118. Guedry FE (1965) Orientation of the rotation axis relative to gravity: its influence on nystagmus and the sensation of rotation. Acta Otolaryngol 60:30–48PubMedGoogle Scholar
  119. Haines DE (1977) Cerebellar corticonuclear and corticovestibular fibers of the flocculonodular lobe in a prosimian primate (Galago senegalensis). J Comp Neurol 174:607–630CrossRefPubMedGoogle Scholar
  120. Halstead W, Yacorzynski G, Fearing F (1937) Further evidence of cerebellar influence in the habituation of after-nystagmus in pigeons. Am J Physiol 120:350–355Google Scholar
  121. Harris LR, Lepore F, Guillemot JP, Cynader M (1980) Abolition of optokinetic nystagmus in the cat. Science 210:91–92PubMedGoogle Scholar
  122. Henn V, Young LR, Finley C (1974) Vestibular nucleus units in alert monkeys are also influenced by moving visual fields. Brain Res 71:144–149CrossRefPubMedGoogle Scholar
  123. Henn V, Cohen B, Young LR (1980) Visual-vestibular interaction in motion perception and the generation of nystagmus. Neurosci Res Prog Bull 18:457–651Google Scholar
  124. Henn V, Reisine H, Waespe W, Boehmer A (1983) Pathophysiology of the vestibular system and its clinical implication. In: Suzuki J-I (ed) Clinical examination on vertigo and loss-of-balance. Gendai, Tokyo, pp 366–378Google Scholar
  125. Henn V, Lang W, Hepp K, Reisine H (1984) Experimental gaze palsies in monkeys and their relation to human pathology. Brain 107:619–636PubMedGoogle Scholar
  126. Hoddevik GH (1978) The projection from nucleus reticularis tegmenti pontis onto the cerebellum in the cat. A study using the methods of anterograde degeneration and retrograde axonal transport of horseradish peroxidase. Anat Embryol 153:227–242CrossRefPubMedGoogle Scholar
  127. Hoffmann K-P (1982) Cortical versus subcortical contributions to the optokinetic reflex in the cat. In: Lennerstrand G (ed) Functional basis of ocular motility disorders. Pergamon Press, Oxford, pp 303–310Google Scholar
  128. Hoffmann K-P, Distler C (1986) The role of direction selective cells in the nucleus of the optic tract of the cat and monkey during optokinetic nystagmus. In: Keller EL, Zee DS (eds) Adaptive processes in visual and oculomotor system. Pergamon Press Oxford, pp 261–266Google Scholar
  129. Hoffmann K-P, Schoppmann A (1975) Retinal input to direction selective cells in the nucleus tractus opticus of the cat. Brain Res 99:359–366CrossRefPubMedGoogle Scholar
  130. Honrubia V, Koehn WW, Jenkins HA, Fenton WH (1982) Effect of bilateral ablation of the vestibular cerebellum on visual-vestibular interaction. Exp Neurol 75:616–626CrossRefPubMedGoogle Scholar
  131. Hudspeth AJ (1983) The hair cells of the inner ear. Sci American 248 1:42–52Google Scholar
  132. Hutchins B, Weber JT (1985) The pretectal complex of the monkey: a reinvestigation of the morphology and retinal terminations. J Comp Neurol 232:425–442CrossRefPubMedGoogle Scholar
  133. Igarashi M, Miyata H, Kato Y, Wright WK, Levy JK (1975) Optokinetic nystagmus after cerebellar uvulanodulectomy in squirrel monkeys. Acta Otolaryngol 80:180–184PubMedGoogle Scholar
  134. Igarashi M, Takahashi M, Kubo T, Alford BR, Wright WK (1980) Effect of off-vertical tilt and macular ablation on postrotatory nystagmus in the squirrel monkey. Acta Otolaryngol 90:93–99PubMedGoogle Scholar
  135. Ingvar S (1918) Zur Phylo-und Ontogenese des Kleinhirns nebst einem Versuche zu einheitlicher Erklärung der zerebellären Funktion und Lokalisation. Folia Neuro-Biol (Leipzig) 11:205–495Google Scholar
  136. Ito M (1970) Neurophysiological aspects of the cerebellar motor control system. Int J Neurol 7:162–176PubMedGoogle Scholar
  137. Ito M (1984) The cerebellum and neural control. Raven, New YorkGoogle Scholar
  138. Ito M, Jastreboff PJ, Miyashita Y (1982) Specific effects of unilateral lesions in the flocculus upon eye movements of rabbits. Exp Brain Res 45:233–242CrossRefPubMedGoogle Scholar
  139. Jaeger J, Henn V (1981) Habituation of the vestibulo-ocular reflex (VOR) in the monkey during sinusoidal rotation in the dark. Exp Brain Res 41:108–114PubMedGoogle Scholar
  140. Jaeger J, Henn V, Lang W, Miles TS, Waespe W (1981) Vestibular unit activity in monkeys with horizontal gaze palsy. In: Fuchs AF, Becker W (eds) Progr Oculomot Res, Dev Neurosci, vol 12. Elsevier, Amsterdam, pp 89–95Google Scholar
  141. Janeke JB, Jongkees LBW, Oosterveld WJ (1970) Relationship between otoliths and nystagmus. Acta Otolaryngol 69:1–6PubMedGoogle Scholar
  142. Jensen DW (1983) Survival of function in the deafferented vestibular nerve. Brain Res 273:175–178CrossRefPubMedGoogle Scholar
  143. Jung R (1948) Die Registrierung des postrotatorischen und optokinetischen Nystagmus und die optisch-vestibuläre Integration beim Menschen. Acta Otolaryngol 36:199–202Google Scholar
  144. Jung R (1978) Perception, consciousness and visual attention. In: Buser P, Rougeul-Buser A (eds) Cerebral correlates of conscious experience. INSERM Symp 6. Elsevier, Amsterdam, pp 15–36Google Scholar
  145. Kasai T, Zee DS (1978) Eye-head coordination in labyrinthine-defective human beings. Brain Res 144:123–141CrossRefPubMedGoogle Scholar
  146. Kase M, Noda H, Suzuki DA, Miller DC (1979) Target velocity signals of visual tracking in vermal Purkinje cells of the monkey. Science 205:717–720PubMedGoogle Scholar
  147. Kato I, Harada K, Nakamura T, Sato Y, Kawasaki T (1982) Role of the nucleus reticularis pontis on visually induced eye movements. Exp Neurol 78:503–516CrossRefPubMedGoogle Scholar
  148. Kato I, Harada K, Hasegawa T, Igarashi T, Koike Y, Kawasaki T (1986) Role of the nucleus of the optic tract in monkeys in relation to optokinetic nystagmus. Brain Res 364:12–22CrossRefPubMedGoogle Scholar
  149. Keller EL (1976) Behavior of horizontal semicircular canal afferents in alert monkey during vestibular and optokinetic stimulation. Exp Brain Res 24:459–471CrossRefPubMedGoogle Scholar
  150. Keller EL (1978) Gain of the vestibulo-ocular reflex in monkey at high rotational frequencies. Vision Res 18:311–315CrossRefPubMedGoogle Scholar
  151. Keller EL, Crandall WF (1983) Neuronal responses to optokinetic stimuli in pontine nuclei of behaving monkey. J Neurophysiol 49:169–187PubMedGoogle Scholar
  152. Keller EL, Daniels PD (1975) Oculomotor related interaction of vestibular and visual stimulation in vestibular nucleus cells in alert monkey. Exp Neurol 46:187–198CrossRefPubMedGoogle Scholar
  153. Keller EL, Kamath BY (1975) Characteristics of head rotation and eye movement-related neurons in alert monkey vestibular nucleus. Brain Res 100:182–187CrossRefPubMedGoogle Scholar
  154. Keller EL, Precht W (1979) Visual-vestibular responses in vestibular nuclear neurons in the intact and cerebellectomized, alert cat. Neurosci 4:1599–1613CrossRefGoogle Scholar
  155. Kimm J, Hassul M, Cogdell B (1976) Fastigial neuronal responses to sinusoidal horizontal rotation. Exp Neurol 50:579–594CrossRefPubMedGoogle Scholar
  156. Koehn WW, Jenkins HA, Honrubia V, Fenton WH (1981) Effect of unilateral ablation of the vestibular cerebellum on visual-vestibular interaction. Exp Brain Res 73:618–631Google Scholar
  157. Koenig E, Dichgans J (1981) Aftereffects of vestibular and optokinetic stimulation and their interaction. In: Cohen B (ed) Vestibular and oculomotor physiology. Ann NY Acad Sci 374:434–445PubMedGoogle Scholar
  158. Koerner F, Schiller PH (1972) The optokinetic response under open and closed loop conditions in the monkey. Exp Brain Res 14:318–330CrossRefPubMedGoogle Scholar
  159. Kommerell G (ed) (1978) Augenbewegungsstörungen, Neurophysiologie und Klinik — Disorders of ocular motility, Neurophysiological and clinical aspects. Bergmann, MünchenGoogle Scholar
  160. Kommerell G, Täumer R (1972) Investigations of the eye tracking system through stabilised retinal images. Bibl Ophthalmol 82:288–297PubMedGoogle Scholar
  161. Korte GE (1979) The brainstem projection of the vestibular nerve in the cat. J Comp Neurol 184:279–292CrossRefPubMedGoogle Scholar
  162. Korte GE, Friedrich VL (1979) The fine structure of the feline superior vestibular nucleus: identification and synaptology of the primary vestibular afferents. Brain Res 176:3–32CrossRefPubMedGoogle Scholar
  163. Korte GE, Mugnaini E (1979) The cerebellar projection of the vestibular nerve in the cat. J Comp Neurol 184:265–278CrossRefPubMedGoogle Scholar
  164. Korte GE, Friedrich VL (1979) The fine structure of the feline superior vestibular nucleus: identification and synaptology of the primary vestibular afferents. Brain Res 176:3–32CrossRefPubMedGoogle Scholar
  165. Kotchabhakdi N, Walberg F (1978) Primary vestibular afferent projections to the cerebellum as demonstrated by retrograde axonal transport of horseradish peroxidase. Brain Res 142:142–146CrossRefPubMedGoogle Scholar
  166. Kowler E, van den Steen J, Tamminga EP, Collewijn H (1984) Voluntary selection of the target for smooth eye movements in the presence of superimposed, full-field stationary, and moving stimuli. Vison Res 24:1789–1798CrossRefGoogle Scholar
  167. Lackner JR, Graybiel A (1981) Variations in gravitoinertial force level affect the gain of the vestibulo-ocular reflex: implications for the etiology of space motion sickness. Aviat Space Environ Med 52:154–158PubMedGoogle Scholar
  168. Langer TP (1985) Basal interstitial nucleus of the cerebellum: cerebellar nucleus related to the flocculus. J Comp Neurol 235:38–47CrossRefPubMedGoogle Scholar
  169. Langer TP Fuchs AF, Chubb MC, Scudder CA, Lisberger SG (1985a) Floccular efferents in the rhesus macaque as revealed by autoradiography and horseradish peroxidase. J Comp Neurol 235:26–37CrossRefPubMedGoogle Scholar
  170. Langer TP, Fuchs AF, Scudder CA, Chubb MC (1985b) Afferents to the flocculus of the cerebellum in the rhesus macaque as revealed by retrograde transport of horseradish peroxidase. J Comp Neurol 235:1–25CrossRefPubMedGoogle Scholar
  171. Lannou J, Cazin L, Precht W, Letaillanter M (1984) Responses of prepositus hypoglossi neurons to optokinetic and vestibular stimulation in the rat. Brain Res 301:39–45CrossRefPubMedGoogle Scholar
  172. Larsell O (1937) The cerebellum. A review and interpretation. Arch Neurol Psychiat 38:580–607Google Scholar
  173. Lennerstrand G, Zee DS, Keller EL (eds) (1982) Functional basis of ocular motility disorders. Wenner-Gren Symp Ser 37. Pergamon, OxfordGoogle Scholar
  174. Lin H, Giolli RA (1979) Accessory optic system of rhesus monkey. Exp Neurol 63:163–176CrossRefPubMedGoogle Scholar
  175. Lindeman HH (1970) Studies on the morphology of the sensory regions of the vestibular apparatus. Ergeb Anat Entw Gesch 42:1–113Google Scholar
  176. Lisberger SG, Fuchs AF (1978a) Role of primate flocculus during rapid behavioral modification of vestibuloocular reflex. I. Purkinje cell activity during visually guided horizontal smooth-pursuit eye movements and passive head rotation. J Neurophysiol 41:733–763PubMedGoogle Scholar
  177. Lisberger SG, Fuchs AF (1978b) Role of primate flocculus during rapid behavioral modification of vestibuloocular reflex. II. Mossy fiber firing pattern during horizontal head rotation and eye movement. J Neurophysiol 41:764–777PubMedGoogle Scholar
  178. Lisberger SG, Miles FA (1980) Role of primate medial vestibular nucleus in long-term adaptive plasticity of vestibuloocular reflex. J Neurophysiol 43:1725–1745PubMedGoogle Scholar
  179. Lisberger SG, Pavelko TA (1986) Vestibular signals carried by the pathways subserving plasticity of the vestibulo-occular reflex in monkeys. Neurosci 6:346–354PubMedGoogle Scholar
  180. Lisberger SG, Westbrook LE (1985) Properties of visual inputs that initiate horizontal smooth pursuit eye movements in monkeys. J Neurosci 5:1662–1673PubMedGoogle Scholar
  181. Lisberger SG, Miles FA, Optican LM, Eighmy BB (1981) Optokinetic response in monkey: underlying mechanisms and their sensitivity to long-term adaptive changes in vestibuloocular reflex. J Neurophysiol 45:869–890PubMedGoogle Scholar
  182. Lopez-Barneo J, Darlot C, Berthoz A (1981) Functional role of the prepositus hypoglossi nucleus in the control of gaze. In: Granit R, Pompeiano O (eds) Reflex control of posture and movement. Prog Brain Res Vol 50. Elsevier, Amsterdam; pp 667–679Google Scholar
  183. Lopez-Barneo J, Darlot C, Berthoz A, Baker R (1982) Neuronal activity in prepositus nucleus correlated with eye movement in the alert cat. J Neurophysiol 47:329–352PubMedGoogle Scholar
  184. Lorente de Nó R (1931) Ausgewählte Kapitel aus der vergleichenden Physiologie des Labyrinths. Die Augenmuskelreflexe beim Kaninchen und ihre Grundlagen. Ergebn Physiol 32:73–242CrossRefGoogle Scholar
  185. Lorente de Nó R (1933) Vestibulo-ocular reflex arc. Arch Neurol Psychiatr 30:245–291Google Scholar
  186. Lorente de Nó R (1938) Analysis of the activity of the chains of internuncial neurons. J Neurophysiol 1:207–244Google Scholar
  187. Lorente de Nó R (1939) Transmission of impulse through cranial motor nuclei. J Neurophysiol 2:402–464Google Scholar
  188. Louie AW, Kimm J (1976) The response of 8th nerve fibers to horizontal sinusoidal oscillation in the alert monkey. Exp Brain Res 24:447–457CrossRefPubMedGoogle Scholar
  189. Lynch JC, Mountcastle VB, Talbot WH, Yin TCT (1977) Parietal lobe mechanisms for directed visual attention. J Neurophysiol 40:362–389PubMedGoogle Scholar
  190. Mach E (1875) Grundlinien der Lehre von den Bewegungsempfindungen. Engelmann, LeipzigGoogle Scholar
  191. Madigan JC, Carpenter MB (1971) Cerebellum of the rhesus monkey. Univ Park Press, BaltimoreGoogle Scholar
  192. Maekawa K, Kimura M, Takeda T (1981a) Mossy fiber activation of the cerebellar flocculus from the visual system. Ann NY Acad Sci 374:476–490PubMedGoogle Scholar
  193. Maekawa K, Takeda T, Kimura M (1981b) Neural activity of nucleus reticularis tegmenti pontis — the origin of visual mossy fiber afferents to the cerebellar flocculus of rabbits. Brain Res 210:17–30CrossRefPubMedGoogle Scholar
  194. Maekawa K, Takeda T, Kimura M (1984) Responses of the nucleus of the optic tract neurons projecting to the nucleus reticularis tegmenti pontis upon optokinetic stimulation in the rabbit. Neurosci Res 2:1–25CrossRefPubMedGoogle Scholar
  195. Magnin M, Courjon JH, Flandrin JM (1983) Possible visual pathways to the cat vestibular nuclei involving the nucleus prepositus hypoglossi. Exp Brain Res 51:298–303CrossRefPubMedGoogle Scholar
  196. Marcotte RR, Updyke BV (1982) Cortical visual areas of the cat project differentially onto the nuclei of the accessory optic system. Brain Res 242:205–217CrossRefPubMedGoogle Scholar
  197. McCrea RA, Baker R (1985a) Cytology and intrinsic organization of the perihypoglossal nuclei in the cat. J Comp Neurol 237:360–376CrossRefPubMedGoogle Scholar
  198. McCrea RA, Baker R (1985b) Anatomical connections of the nucleus prepositus of the cat. J Comp Neurol 237:377–407CrossRefPubMedGoogle Scholar
  199. McCrea RA, Baker R, Delgado-Garcia J (1979) Afferent and efferent organization of the prepositus hypoglossi nucleus. In: Granit R, Pompeiano O (eds) Reflex control of posture and movements. Prog Brain Res, Vol 50. Elsevier, Amsterdam; pp 653–665Google Scholar
  200. McKinley PA, Peterson BW (1985) Voluntary modulation of the vestibuloocular reflex in humans and its relation to smooth pursuit. Exp Brain Res 60:454–464CrossRefPubMedGoogle Scholar
  201. Melvill Jones G, Milsum JH (1971) Frequency response analysis of central vestibular unit activity resulting from rotational stimulation of the semicircular canals. J Physiol (Lond) 219:191–215PubMedGoogle Scholar
  202. Meyer CH, Lasker AG, Robinson DA (1985) The upper limit of human smooth pursuit velocity. Vision Res 25:561–563CrossRefPubMedGoogle Scholar
  203. Miles FA (1974) Single unit firing patterns in the vestibular nuclei related to voluntary eye movements and passive body rotation in conscious monkeys. Brain Res 71:215–224CrossRefPubMedGoogle Scholar
  204. Miles FA, Braitman DJ (1980) Long-term adaptive changes in primate vestibulo-ocular reflex. II. Electrophysiological observations on semicircular canal primary afferents. J Neurophysiol 43:1426–1436PubMedGoogle Scholar
  205. Miles FA, Eighmy BB (1980) Long-term adaptive changes in primate vestibulo-ocular reflex. I. Behavioral observations. J Neurophysiol 43:1406–1425PubMedGoogle Scholar
  206. Miles FA, Braitman DJ, Dow BM (1980a) Long-term adaptive changes in primate vestibuloocular reflex. IV. Electrophysiological observations in flocculus of adapted monkeys. J Neurophysiol 43:1477–1493PubMedGoogle Scholar
  207. Miles FA, Fuller JH, Braitman DJ, Dow BM (1980b) Long-term adaptive changes in primate vestibuloocular reflex. III. Electrophysiological observations in flocculus of normal monkeys. J Neurophysiol 43:1437–1476PubMedGoogle Scholar
  208. Miles FA, Kawano K, Optican LM (1986) Short latency ocular following responses of monkey. I. Dependence on temporo-spatial properties of the visual input. J Neurophysiol 56:1321–1354PubMedGoogle Scholar
  209. Mitsacos A, Reisine H, Highstein SM (1983a) The superior vestibular nucleus: an intracellular HRP study in the cat. I. Vestibulo-ocular neurons. J Comp Neurol 215:78–91CrossRefPubMedGoogle Scholar
  210. Mitsacos A, Reisine H, Highstein SM (1983b) The superior vestibular nucleus: an intracellular HRP study in the cat. II. Non-vestibulo-ocular neurons. J Comp Neurol 215:92–107CrossRefPubMedGoogle Scholar
  211. Miyashita Y (1984) Eye velocity responsiveness and its proprioceptive component in the floccular Purkinje cells of the alert pigmented rabbit. Exp Brain Res 55:81–90CrossRefPubMedGoogle Scholar
  212. Miyashita Y, Nagao S (1984) Analysis of signal content of Purkinje cell responses to optokinetic stimuli in the rabbit cerebellar flocculus by selective lesions of brainstem pathways. Neurosci Res 1:223–241CrossRefPubMedGoogle Scholar
  213. Miyashita Y, Ito M, Jastreboff PJ, Maekawa K, Nagao S (1980) Effect upon eye movements of rabbits induced by severance of mossy fiber visual pathway to the cerebellar flocculus. Brain Res 198:210–215CrossRefPubMedGoogle Scholar
  214. Money KE, Scott JW (1962) Functions of separate sensory receptors of non-auditory labyrinth of the cat. Am J Physiol 202:1211–1220PubMedGoogle Scholar
  215. Mowrer OH (1937) The influence of vision during bodily rotation upon the duration of post-rotational vestibular nystagmus. Acta Otolaryngol 25:351–364Google Scholar
  216. Muratore R, Zee DS (1979) Pursuit after-nystagmus. Vision Res 19: 1057–1059CrossRefPubMedGoogle Scholar
  217. Naegele JR, Held R (1982) The postnatal development of monocular optokinetic nystagmus in infants. Vision Res 22:391–397CrossRefGoogle Scholar
  218. Nagao S (1983) Effects of vestibulocerebellar lesions upon dynamic characteristics and adaptation of vestibuloocular and optokinetic responses in pigmented rabbits. Exp Brain Res 53:36–46CrossRefPubMedGoogle Scholar
  219. Noda H (1981) Visual mossy fiber inputs to the flocculus of the monkey. In: Cohen B (ed) Vestibular and oculomotorphysiology. Ann NY Acad Sci, vol 374. New York Acad Sci, New York; pp 465–475Google Scholar
  220. Noda H, Suzuki DA (1979a) The role of the flocculus of the monkey in fixation and smooth pursuit eye movements. J Physiol (Lond) 294:335–348PubMedGoogle Scholar
  221. Noda H, Suzuki DA (1979b) Processing of eye movement signals in the flocculus of the monkey. J Physiol (Ldon) 294:349–364PubMedGoogle Scholar
  222. Noda H, Warabi T (1982) Eye position signals in the flocculus of the monkey during smooth-pursuit eye movements. J Physiol (Lond) 324:187–202PubMedGoogle Scholar
  223. Ohm J (1933) Über die Beziehungen zwischen willkürlichen, optischen und vestibulären Augenbewegungen. Z Hals-Nasen-Ohrenheilk 32:234–246Google Scholar
  224. Paige GD (1983) Vestibulo-ocular reflex and its interactions with visual following mechanisms in the squirrel monkey. I. Response characteristics in normal animals. J Neurophysiol 49:134–151PubMedGoogle Scholar
  225. Pola J, Wyatt HJ (1980) Target position and velocity: the stimuli for smooth pursuit eye movements. Vision Res 20:523–534CrossRefPubMedGoogle Scholar
  226. Precht W (1978) Neuronal operations in the vestibular system. In: Braitenberg V (ed) Studies of brain function, vol 2. Springer, Berlin Heidelberg New YorkGoogle Scholar
  227. Precht W, Simpson JI, Llinas R (1976a) Responses of Purkinje cells in rabbit nodulus and uvula to natural vestibular and visual stimuli. Pflügers Arch 367:1–6CrossRefGoogle Scholar
  228. Precht W, Volkind R, Maeda M, Giretti ML (1976b) The effects of stimulating the cerebellar nodulus in the cat on the responses of vestibular neurons. Neurosci 1:301–312CrossRefGoogle Scholar
  229. Precht W, Cazin L, Blanks R, Lannou J (1982) Anatomy and physiology of the optokinetic pathways to the vestibular nuclei in the rat. In: Roucoux A, Crommelinck M (eds) Physiological and pathological aspects of eye movements. W Junk, The Hague, pp 153–172Google Scholar
  230. Precht W, Blanks RHI, Strata P, Montarolo P (1985) On the role of subprimate cerebellar flocculus in the optokinetic reflex and visual-vestibular interaction. In: Cerebellar functions. Bloedel JR, Dichgans J, Precht W (eds) Springer, Berlin, New York, pp 86–108Google Scholar
  231. Raphan T, Cohen B (1985) Velocity storage and the ocular response to multidimensional vestibular stimuli. In: Berthoz A, Melvill Jones G (eds) Adaptive mechanisms in gaze control. Elsevier, Amsterdam; pp 123–143Google Scholar
  232. Raphan T, Cohen B, Matsuo V (1977) A velocity-storage mechanism responsible for optokinetic nystagmus (OKN), optokinetic afternystagmus (OKAN) and vestibular nystagmus. In: Baker R, Berthoz A (eds) Control of gaze by brain stem neurons. Development Neurosci, vol I. Elsevier, Amsterdam; pp 37–47Google Scholar
  233. Raphan T, Matsuo V, Cohen B (1979) Velocity storage in the vestibulo-ocular reflex arc (VOR). Exp Brain Res 35:229–248CrossRefPubMedGoogle Scholar
  234. Raphan T, Cohen B, Henn V (1981) Effects of gravity on rotatory nystagmus in monkeys. In: Cohen B (ed) Vestibular and oculomotor physiology. Ann NY Acad Sci, vol 374. New York Acad Sci, New York; pp 44–55Google Scholar
  235. Raphan T, Cohen B, Suzuki J-I, Henn V (1983a) Nystagmus generated by pitch while rotating. Brain Res 276:165–172CrossRefPubMedGoogle Scholar
  236. Raphan T, Waespe W, Cohen B (1983b) Labyrinthine activation during rotation about axes tilted from the vertical. Adv Otorhinolaryngol 30:50–53PubMedGoogle Scholar
  237. Rashbass C (1961) The relationship between saccadic and smooth tracking eye movements. J Physiol (Lond) 159:326PubMedGoogle Scholar
  238. Reisine H, Simpson JI, Rudinger D, Henn V (1985) Combined anatomical and physiological study of semicircular canal orientation in the rhesus monkey. Soc Neurosci Abstr 11:319Google Scholar
  239. Robinson DA (1963) A method of measuring eye movement using a scleral search coil in a magnetic field. IEEE Trans Biomed Electron 10:137–145Google Scholar
  240. Robinson DA (1965) The mechanism of human smooth pursuit eye movement. J Physiol (Lond) 180:569PubMedGoogle Scholar
  241. Robinson DA (1977) Linear addition of optokinetic and vestibular signals in the vestibular nucleus. Exp Brain Res 30:447–450CrossRefPubMedGoogle Scholar
  242. Robinson DA (1981a) The use of control systems analysis in the neurophysiology of eye movements. Ann Rev Neurosci 4:463–503CrossRefPubMedGoogle Scholar
  243. Robinson DA (1981b) Control of eye movements. In: VB Brooks (ed) Handbook of Physiology, the Nervous System, vol II, part 2. Williams & Wilkins, Baltimore, 1275–1320Google Scholar
  244. Robinson DA (1982) A model of cancellation of the vestibulo-ocular reflex. In: Lennerstrand G, Zee DS, Keller EL (eds) Functional basis of ocular motility disorders. Pergamon, Oxford; pp 5–13Google Scholar
  245. Ron S, Robinson DA (1973) Eye movements evoked by cerebellar stimulation in alert monkey. J Neurophysiol 36:1004–1022PubMedGoogle Scholar
  246. Roucoux A, Crommelinck M (eds) (1982) Physiological and pathological aspects of eye movements. W Junk, The HagueGoogle Scholar
  247. Rubertone JA, Haines DE (1981) Secondary vestibulocerebellar projections to flocculonodular lobe in a prosimian primate, Galago senegalensis. J Comp Neurol 200:255–272CrossRefPubMedGoogle Scholar
  248. Sandeman D (1983) The balance and visual systems of the swimming crab: their morphology and interaction. In: Horn E (ed) Fortschritte der Zoologie: Multimodal convergences in sensory systems. Gustav Fischer, Stuttgart; pp 213–229Google Scholar
  249. Sato Y, Kawasaki T, Ikarashi K (1982) Zonal organization of the floccular Purkinje cells projecting to the vestibular nucleus in cats. Brain Res 232:1–15CrossRefPubMedGoogle Scholar
  250. Sato Y, Kawasaki T, Ikarashi K (1983a) Afferent projections from the brainstem to the three floccular zones in cats. I. Climbing fiber projections. Brain Res 272:27–36CrossRefPubMedGoogle Scholar
  251. Sato Y, Kawasaki T, Ikarashi K (1983b) Afferent projections from the brainstem to the three floccular zones in cats. II. Mossy fiber projections. Brain Res 272:37–48CrossRefPubMedGoogle Scholar
  252. Scalia F (1972) The termination of retinal axons in the pretectal region of mammals. J Comp Neurol 145:223–258CrossRefPubMedGoogle Scholar
  253. Schaefer K-P, Zierau H, Suss KJ (1977) Differentiation of neuronal activity in the vestibular nuclei of rabbits. In: Baker R, Berthoz A (eds) Control of gaze by brain stem neurons. Dev Neurosci I. Amsterdam, Elsevier; pp 257–260Google Scholar
  254. Schneider LW, Anderson DJ (1976) Transfer characteristics of first and second order lateral canal vestibular neurons in gerbil. Brain Res 112:61–76CrossRefPubMedGoogle Scholar
  255. Schrader V, Koenig E, Dichgans J (1985) The effect of lateral head tilt on horizontal postrotatory nystagmus I and II and the Purkinje effect. Acta Otolaryngol 100:98–105PubMedGoogle Scholar
  256. Schuknecht HF (1982) Behavior of the vestibular nerve following labyrinthectomy. Ann Otol Rhino Laryngol (Suppl) 91:16–32Google Scholar
  257. Segal BN, Liben S (1985) Modulation of human velocity storage sampled during intermittently-illuminated optokinetic stimulation. Exp Brain Res 59:515–523PubMedGoogle Scholar
  258. Shimazu H, Precht W (1965) Tonic and kinetic responses of cat's vestibular neurons to horizontal angular acceleration. J Neurophysiol 28:991–1013PubMedGoogle Scholar
  259. Shimazu H, Precht W (1966) Inhibition of central vestibular neurons from the contralateral labyrinth and its mediating pathway. J Neurophysiol 29:989–1013Google Scholar
  260. Shinoda Y Yoshida K (1974) Dynamic characteristics of responses to horizontal head angular acceleration in vestibuloocular pathway in the cat. J Neurophysiol 37:653–673PubMedGoogle Scholar
  261. Simpson JI (1984) The accessory optic system. Ann Rev Neurosci 7:13–41CrossRefPubMedGoogle Scholar
  262. Simpson JI, Graf W (1985) The selection of reference frames by nature and its investigators. In: Berthoz A, Melvill Jones G (eds) Adaptive mechanisms in gaze control — facts and theories. Rev Oculomotor Res, vol 1. Elsevier, Amsterdam; pp 3–16Google Scholar
  263. Singleton GT (1967) Relationships of the cerebellar nodulus to vestibular function: a study of the effects of nodulectomy on habituation. Laryngoscope 77:1579–1620PubMedGoogle Scholar
  264. Sirkin DW, Precht W, Courjon JH (1984) Initial, rapid phase of recovery from unilateral vestibular lesion in rat not dependent on survial of central portion of vestibular nerve. Brain Res 302:245–256CrossRefPubMedGoogle Scholar
  265. Skavenski AA, Robinson DA (1973) Role of abducens neurons in vestibuloocular reflex. J Neurophysiol 36:724–738PubMedGoogle Scholar
  266. Smith E (1903) On the morphology of the brain in the mammalia, with special reference to that of the Lemurs, recent and extinct. Trans Linnean Soc 8:319Google Scholar
  267. Spiegel EA, Scala NP (1942) Position nystagmus in cerebellar lesions. J Neurophysiol 5:247–260Google Scholar
  268. Steiger J-J, Büttner-Ennever JA (1979) Oculomotor nucleus afferents in the monkey demonstrated with hoseradish peroxidase. Brain Res 160:1–15CrossRefPubMedGoogle Scholar
  269. Steinbach MJ (1976) Pursuing the perceptual rather than the retinal stimulus. Vision Res 16:1371CrossRefPubMedGoogle Scholar
  270. Steinman RM, Cushman WB, Martins AJ (1982) The precision of gaze. Human Neurobiol 1:97–109Google Scholar
  271. Stroud BB (1895) The mammalian cerebellum. J Comp Neurol 5:71–118CrossRefGoogle Scholar
  272. Suzuki DA, Keller DA (1982) Vestibular signals in the posterior vermis of the alert monkey cerebellum. Exp Brain Res 47:145–147CrossRefPubMedGoogle Scholar
  273. Suzuki DA, Keller EL (1984) Visual signals in the dorsolateral pontine nucleus of the alert monkey: their relationship to smooth-pursuit eye movements. Exp Brain Res 53:473–478CrossRefPubMedGoogle Scholar
  274. Suzuki DA, Noda H, Kase M (1981) Visual and pursuit eve movement-related activity in posterior vermis of monkey cerebellum. 46:1120–1139Google Scholar
  275. Takemori S, Cohen B (1974) Loss of visual suppression of vestibular nystagmus after flocculus lesions. Brain Res 72:213–224CrossRefPubMedGoogle Scholar
  276. Tauber ES, Atkin A (1968) Optomotor responses to monocular stimulation: relation to visual system organization. Science 160:1365–1367PubMedGoogle Scholar
  277. Ter Braak JWG (1936) Untersuchungen über optokinetischen Nystagmus (translated “Investigations on optokinetic nystagmus” In: Collewijn H (1981) The oculomotor system of the rabbit and its plasticity. Studies of brain function, vol 5. Springer, Berlin Heidelberg New York) Arch Neerl Physiol 21:309–376Google Scholar
  278. Tomlinson RD, Robinson DA (1984) Signals in vestibular nucleus mediating vertical eye movements in the monkey. J Neurophysiol 51:1121–1136PubMedGoogle Scholar
  279. Uemura T, Cohen B (1973) Effects of vestibular nuclei lesions on vestibulo-ocular reflexes and posture in monkeys. Acta Otolaryngol (Suppl) (Stockh) 315:1–71Google Scholar
  280. Van Die G, Collewijn H (1982) Optokinetic nystagmus in man. Human Neurobiol 1:111–119Google Scholar
  281. Viirre E, Tweed D, Milner K, Vilis T (1986) A re-examination of the gain of the vestibulo-ocular reflex. J Neurophysiol 56:439–450PubMedGoogle Scholar
  282. Waespe W, Cohen B (1983) Effects of flocculectomy on unit activity in the vestibular nuclei during visual-vestibular interactions. Exp Brain Res 51:23–35CrossRefPubMedGoogle Scholar
  283. Waespe W, Henn V (1977a) Neuronal activity in the vestibular nuclei of the alert monkey during vestibular and optokinetic stimulation. Exp Brain Res 27:523–538CrossRefPubMedGoogle Scholar
  284. Waespe W, Henn V (1977b) Vestibular nuclei activity during optokinetic after-nystagmus (OKAN) in the alert monkey. Exp Brain Res 30:323–330CrossRefPubMedGoogle Scholar
  285. Waespe W, Henn V (1978a) Reciprocal changes in primary and secondary optokinetic after-nystagmus (OKAN) produced by repetitive optokinetic stimulation in the monkey. Arch Psychiatr Nervenkr 225:23–30CrossRefPubMedGoogle Scholar
  286. Waespe W, Henn V (1978b) Conflicting visual-vestibular stimulation and vestibular nucleus activity in alert monkey. Exp Brain Res 33:203–211CrossRefPubMedGoogle Scholar
  287. Waespe W, Henn V (1979) The velocity response of vestibular nucleus neurons during vestibular, visual, and combined angular acceleration. Exp Brain Res 37:337–347CrossRefPubMedGoogle Scholar
  288. Waespe W, Henn V (1981) Visual-vestibular interaction in the flocculus of the alert monkey. II. Purkinje cell activity. Exp Brain Res 43:349–360PubMedGoogle Scholar
  289. Waespe W, Henn V (1985) Cooperative functions of vestibular nuclei neurons and floccular Purkinje cells in the control of nystagmus slow phase velocity: single cell recordings and lesion studies in the monkey. In: Berthoz A, Melvill Jones G (eds) Adaptive mechanisms in gaze control — facts and theories. Elsevier, Amsterdam; pp 233–250Google Scholar
  290. Waespe W, Schwarz U (1986) Characteristics of eye velocity storage during periods of suppression and reversal of eye velocity in monkeys. Exp Brain Res 65:49–58CrossRefPubMedGoogle Scholar
  291. Waespe W, Wolfensberger M (1985) Optokinetic nystagmus (OKN) and optokinetic after-responses after bilateral vestibular neurectomy in the monkey. Exp Brain Res 60:263–269PubMedGoogle Scholar
  292. Waespe W, Henn V, Miles TS (1977) Activity in the vestibular nuclei of the alert monkey during spontaneous eye movements and vestibular or optokinetic stimulation. In: Baker R, Berthoz A (eds) Control of gaze by brain stem neurons, Dev Neurosci, vol 1. Elsevier, Amsterdam; pp 269–278Google Scholar
  293. Waespe W, Huber T, Henn V (1978) Dynamic changes of optokinetic afternystagmus (OKAN) caused by brief visual fixation periods in monkey and man. Arch Psychiatr Nervenkr 226:1–10CrossRefPubMedGoogle Scholar
  294. Waespe W, Henn V, Isoviita V (1980) Nystagmus slow-phase velocity during vestibular, optokinetic, and combined stimulation in the monkey. Arch Psychiatr Nervenkr 228:275–286CrossRefPubMedGoogle Scholar
  295. Waespe W, Büttner U, Henn V (1981) Visual-vestibular interaction in the flocculus of the alert monkey. I. Input activity. Exp Brain Res 43:337–348PubMedGoogle Scholar
  296. Waespe W, Cohen B, Raphan T (1983) Role of the flocculurs and paraflocculus in optokinetic nystagmus and visual-vestibular interactions: effects of lesions. Exp Brain Res 50:9–33CrossRefPubMedGoogle Scholar
  297. Waespe W, Cohen B, Raphan T (1985a) Dynamic modification of the vestibuloocular reflex by the nodulus and uvula. Science 228:199–202PubMedGoogle Scholar
  298. Waespe W, Rudinger D, Wolfensberger M (1985b) Purkinje cell activity in the flocculus of vestibular neurectomized and normal monkeys during optokinetic nystagmus (OKN) and smooth pursuit movements. Exp Brain Res 60:243–262PubMedGoogle Scholar
  299. Walberg F, Bowsher D, Brodal A (1958) The termination of primary vestibular fibers in the vestibular nuclei in the cat: an experimental study with silver methods. J Comp Neurol 110:391–419CrossRefPubMedGoogle Scholar
  300. Weber JT (1985) Pretectal complex and accessory optic system of primates. Brain Behav Evol 26:117–140PubMedGoogle Scholar
  301. Weber JT, Giolli RA (1986) The medial terminal nucleus of the monkey: evidence for a “complete” accessory optic system. Brain Res 365:164–168CrossRefPubMedGoogle Scholar
  302. Westheimer G, Blair SM (1974) Functional organization of primate oculomotor system revealed by cerebellectomy. Exp Brain Res 21:463–472CrossRefPubMedGoogle Scholar
  303. Westheimer G, McKee SP (1975) Visual acuity in the presence of retinal-image motion. J Opt Soc Am 65:847–850PubMedGoogle Scholar
  304. Wilson VJ, Melvill Jones G (1979) Mammalian vestibular physiology. Plenum, New YorkGoogle Scholar
  305. Wilson VJ, Kato M, Thomas RC, Peterson BW (1966) Excitation of lateral vestibular neurons by peripheral afferent fibers. J Neurophysiol 29:508–529PubMedGoogle Scholar
  306. Winterson BJ, Steinman RM (1978) The effect of luminance on human smooth pursuit perifoveal and foveal targets. Vision Res 18:1165–1172CrossRefPubMedGoogle Scholar
  307. Wurtz RH, Goldberg ME, Robinson DL (1982) Brain mechanisms of visual attention. Sci American 246:100–107Google Scholar
  308. Yasui S, Young LR (1975) Perceived visual motion as effective stimulus to pursuit eye movement system. Science 190:906–908PubMedGoogle Scholar
  309. Yingcharoen K, Rinvik K (1983) Ultrastructural degeneration of a projection from the flocculus to the nucleus prepositus hypoglossi in the cat. Exp Brain Res 51:192–198CrossRefPubMedGoogle Scholar
  310. Young LR (1977) Pursuit eye movement — what is being pursued? In: Baker R, Berthoz A (eds) Control of gaze by brain stem neurons. Developments in Neurosci, vol 1. Elsevier, Amsterdam; pp 29–36Google Scholar
  311. Young LR, Henn V (1975) Nystagmus produced by pitch and yaw rotation of monkeys about non-vertical axes. Fortschr Zool 23:235–246PubMedGoogle Scholar
  312. Zee DS, Yamazaki A, Butler PH, Gueçer G (1981) Effect of ablation of flocculus and paraflocculus on eye movements in primate. J Neurophysiol 46:878–899PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Walter Waespe
    • 1
  • Volker Henn
    • 1
  1. 1.Neurology DepartmentUniversity of ZürichZürichSwitzerland

Personalised recommendations