The preparation of visually guided saccades

  • Burkhart Fischer
Part of the Reviews of Physiology, Biochemistry and Pharmacology book series (volume 106)


Visual Attention Superior Colliculus Saccade Target Saccadic Reaction Time Express Saccade 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barbas H, Mesulam MM (1981) Organization of afferent input to subdivisions of area 8 in the rhesus monkey. J Comp Neurol 200:407–431CrossRefPubMedGoogle Scholar
  2. Bashinski HS, Bacharach VR (1980) Enhancement of perceptual sensitivity as the result of selectively attending to spatial locations. Percept Psychophys 28:241–248PubMedGoogle Scholar
  3. Becker W, Juergens R (1979) An analysis of the saccadic system by means of double step stimuli. Vis Res 19:967–983CrossRefPubMedGoogle Scholar
  4. Bizzi E (1968) Discharge of frontal eye field neurons during saccadic and following eye movements in unanesthetized monkeys. Exp Brain Res 6:69–80CrossRefPubMedGoogle Scholar
  5. Boch R, Fischer B (1983) Saccadic reaction times and activation of prelunate cortex: parallel observations in trained rhesus monkeys. Exp Brain Res 50:201–210CrossRefPubMedGoogle Scholar
  6. Boch R, Fischer B (1986) Further observations on the occurrence of express saccades in monkey. Exp Brain Res 63:487–494CrossRefPubMedGoogle Scholar
  7. Boch R, Fischer B, Ramsperger E (1984) Express-saccades of the monkey: reaction times versus intensity, size, duration, and eccentricity of their targets. Exp Brain Res 55:223–231CrossRefPubMedGoogle Scholar
  8. Boch R (1986) Unpublished observation and personal communicationGoogle Scholar
  9. Bolz J, Rosner G, Waessle H (1982) Response latency of brisk-sustained (X) and brisk-transient (Y) cells in the cat retina. J Physiol 328:171–190PubMedGoogle Scholar
  10. Boussaoud D, Joseph JP (1985) Role of the cat substantia nigra pars reticulata in eye and head movements. II. Effects of local pharmacological injections. Exp Brain Res 57:297–304CrossRefPubMedGoogle Scholar
  11. Bronson GW (1981) The scanning patterns of human infants implication for visual learning. In: Lipsitt LP (ed) monographs on infancy. Ablex, Norwood NJGoogle Scholar
  12. Bruce CJ, Goldberg ME (1984) Physiology of the frontal eye fields. Trends Neurosci 7:436–441CrossRefGoogle Scholar
  13. Bruce CJ, Goldberg ME (1985) Primate frontal eye fields. I. Single neurons discharging before saccades. J Neurophysiol 53:603–635PubMedGoogle Scholar
  14. Bruce CJ, Goldberg ME, Bushnell MC, Stanton GB (1985) Primate frontal eye fields. II. Physiological and anatomical correlates of electrically evoked eye movements. J Neurophysiol 54:714–734PubMedGoogle Scholar
  15. Bushnell MC, Goldberg ME, Robinson DL (1981) Behavioral enhancement of visual responses in monkey cerebral cortex. I. Modulation in posterior parietal cortex related to selective visual attention. J Neurophysiol 46:755–772PubMedGoogle Scholar
  16. Campos-Ortega JA, Hayhow WR (1972) On the organization of the visual cortical projection to the pulvinar in macaca mulatta. Brain Beh Evol 6:394–423Google Scholar
  17. Collin NG, Cowey A (1980) The effect of frontal eyefields and superior colliculi on visual stability and movement discrimination in rhesus monkey. Exp Brain Res 40:251–260CrossRefPubMedGoogle Scholar
  18. Coren S, Hoenig P (1972) Effect of non-target stimuli upon length of voluntary saccades. Percept Mot Skills 34:499–508PubMedGoogle Scholar
  19. Desimone R, Moran J (1985) Mechanisms for selective attention in area V4 and inferior temporal cortex of the macaque. Neurosci Abstr 364. 8:1245Google Scholar
  20. Deubel H, Wolf H, Hauske G (1982) Corrective saccades: effect of shifting the sacade goal. Vis Res 22:353–364CrossRefPubMedGoogle Scholar
  21. Findlay JM (1982) Global visual processing for saccadic eye movements. Vis Res 22:1033–1045CrossRefPubMedGoogle Scholar
  22. Fischer B, Boch R (1981a) Enhanced activation of neurons in prelunate cortex before visually guided saccades of trained rhesus monkeys. Exp Brain Res 44:129–137CrossRefPubMedGoogle Scholar
  23. Fischer B, Boch R (1981b) Selection of visual targets activates prelunate cortical cells in trained rhesus monkeys. Exp Brain Res 41:431–433CrossRefPubMedGoogle Scholar
  24. Fischer B, Boch R (1982) Modifications of presaccadic activation of neurons in the extratriate cortex during prolonged training of rhesus monkeys in a visuo-oculomotor task. Neurosci Lett 30:127–131CrossRefPubMedGoogle Scholar
  25. Fischer B, Boch R (1983) Saccadic eye movements after extremely short reaction times in the monkey. Brain Res 260:21–26CrossRefPubMedGoogle Scholar
  26. Fischer B, Boch R (1985) Peripheral attention versus central fixation: modulation of the visual activity of prelunate cortical cells of the rhesus monkey. Brain Res 345:111–124CrossRefPubMedGoogle Scholar
  27. Fischer B, Boch R, Bach M (1981) Stimulus versus eye movements: comparison of neural activity in the striate and prelunate visual cortex (A17 and A19) of trained rhesus monkey. Exp Brain Res 43:69–77CrossRefPubMedGoogle Scholar
  28. Fischer B, Boch R, Ramsperger E (1984) Express-saccades of the monkey: effects of daily training on probability of occurrence and reaction time. Exp Brain Res 55:232–242CrossRefPubMedGoogle Scholar
  29. Fischer B, Ramsperger E (1984) Human express-saccades: extremely short reaction times of goal directed eye movements. Exp Brain Res 57:191–195CrossRefPubMedGoogle Scholar
  30. Fischer B, Ramsperger E (1986) Human express-saccades: effects of daily practice and randomization. Exp Brain Res 64:569–578CrossRefPubMedGoogle Scholar
  31. Frost D, Poeppel E (1976) Different programming modes of human saccadic eye movements as a function of stimulus eccentricity: indication of a functional subdivision of the visual field. Biol Cybern 23:39–48CrossRefPubMedGoogle Scholar
  32. Gentilucci M, Scandolare C, Pigarev IN, Rizzolatti G (1983) Visual responses in the postarcuate cortex (area 6) of the monkey that are independent of eye positon. Exp Brain Res 50:464–468CrossRefPubMedGoogle Scholar
  33. Goldberg ME, Bruce CJ (1981) Frontal eye fields in the monkey: eye movements remap the effective coordinates of visual stimuli. Neurosci Abstr 44. 4:131Google Scholar
  34. Goldberg ME, Bruce CJ (1985) Cerebral cortical activity associated with the orientation of visual attention in the rhesus monkey. Vis Res 25:471–481CrossRefPubMedGoogle Scholar
  35. Goldberg ME, Bushnell MC (1981) Behavioral enhancement of visual responses in monkey cerebral cortex. II. Modulation in frontal eye fields specifically related to saccades. J Neurophysiol 46:773–787PubMedGoogle Scholar
  36. Goldberg ME, Bushnell MC, Bruce CJ (1986) The effect of attentive fixation on eye movements evoked by electrical stimulation of the frontal eye fields. Exp Brain Res 61:579–584CrossRefPubMedGoogle Scholar
  37. Guitton D, Buchtel HA, Douglas RM (1985) Frontal lobe lesions in man cause difficulties in suppressing reflexive glances and in generating goal-directed saccades. Exp Brain Res 58:455–472CrossRefPubMedGoogle Scholar
  38. Guthrie BL, Porter JD, Sparks DL (1983) Corollary discharge provides accurate eye position information to the oculomotor systems. Science 221:1193–1195PubMedGoogle Scholar
  39. Hering E (1879) Der Raumsinn und die Bewegungen der Augen. In: Hermann L (ed) Handbuch der Physiologie 3. Vogel, Leipzig, pp 343–601Google Scholar
  40. Hikosaka O, Wurtz RH (1981) The role of substantia nigra in the initiation of saccadic eye movements. In: Fuchs AF, Becker W (eds) Elsevier North Holland, AmsterdamGoogle Scholar
  41. Hikosaka O, Wurtz RH (1982) Visual fixation suppresses visual response of cells in monkey substantia nigra pars reticulata (ARVO 1982). Invest Ophthalmol Vis Sci 22:238Google Scholar
  42. Hikosaka O, Wurtz RH (1983) Effects on eye movements of a GABA agonist and antogonist injected into monkey superior colliculus. Brain Res 272:368–372CrossRefPubMedGoogle Scholar
  43. Hikosaka O, Wurtz RH (1985a) Modification of saccadic eye movements by GABA-related substances. I. Effect of muscimol and bicuculline in monkey superior colliculus. J Neurophysiol 53:266–291PubMedGoogle Scholar
  44. Hikosaka O, Wurtz RH (1985b) Modification of saccadic eye movements by GABA-related substances. II. Effects of muscimol in monkey substantia nigra pars reticulata. J Neurophysiol 53:292–308PubMedGoogle Scholar
  45. Hochstein S, Maunsell JHR (1985) Dimensional attention effects in the responses of V4 neurons of the macaque monkey. Neurosci Abstr 364. 6:1244Google Scholar
  46. Holtzmann JD, Sidtis JJ, Volpe BT, Wilson DH, Gazzaniga MS (1981) Dissociation of spatial information for stimulus localization and the control of attention. Brain 104:861–872PubMedGoogle Scholar
  47. Jay MF, Sparks DL (1984) Auditory receptive fields in primate superior colliculus shift with changes in eye position. Nature 309:345–347CrossRefPubMedGoogle Scholar
  48. Jonides J, Irwin DE, Yantis S (1982) Integrating visual information from successive fixations. Science 215:192–194PubMedGoogle Scholar
  49. Joseph JP, Boussaoud D (1985) Role of the cat substantia nigra pars reticulata in eye and head movements. I. Neural activity. Exp Brain Res 57:286–296CrossRefPubMedGoogle Scholar
  50. Jung R (1972) Introduction. — Conclusions: how do we see with moving eyes? Bibl Ophthal 82:1–6; 377–395PubMedGoogle Scholar
  51. Keating EG, Gooley SG, Pratt SE, Kelsey JE (1983) Removing the superior colliculus silences eye movements normally evoked from stimulation of the parietal and occipital eye fields. Brain Res 269:145–148CrossRefPubMedGoogle Scholar
  52. Kurtzberg D, Vaughan Jr HG (1982) Topographic analysis of human cortical potentials preceding self-initiated and visually triggered saccades. Brain Res 243:1–9CrossRefPubMedGoogle Scholar
  53. Leichnetz GR, Spencer RF, Hardy SGP, Astruc J (1981) The prefrontal cortico tectal projection in the monkey: an anterograde and retrograde horseradish peroxidase study. Neurosci 6:1023–1041CrossRefGoogle Scholar
  54. Leichnetz GR, Smith DJ (1983) Prefrontal, frontal eye field, and area 6 projections to the paramedian pontine reticular formation (PPRF) in the monkey. Neurosci Abstr 220. 4:749Google Scholar
  55. Lynch JC, Graybiel AM (1983) Comparison of afferents traced to the superior colliculus from the frontal eye fields and from two sub-regions of area 7 of the rhesus monkey. Neurosci Abstr 220. 5:750Google Scholar
  56. Lynch JC, Mountcastle VB, Talbot WH, Yin TCT (1977) Parietal lobe mechanisms for directed visual attention. J Neurophysiol 40:362–389PubMedGoogle Scholar
  57. MacKay DM (1973) Visual stability and voluntary eye movements. In: Jung R (ed) Central processing of visual information. Springer, Berlin Heidelberg New York, pp 307–331 (Handbook of sensory physiology, vol 7/3)Google Scholar
  58. Maioli MG, Squatrito S, Galletti C, Battaglini PP, Sanseverino ER (1983) Corticocortical connections from the visual region of the superior temporal sulcus to frontal eye field in the macaque. Brain Res 265:294–299CrossRefPubMedGoogle Scholar
  59. Mayfrank L, Mobashery M, Kimmig H, Fischer B (1986) The role of fixation and visual attention on the occurrence of express saccades in man. Eur J Psychiatr Neurol Sci 235:269–275CrossRefGoogle Scholar
  60. Mays LE, Sparks DL (1980a) Dissociation of visual and saccade-related responses in superior colliculus neurons. J Neurophysiol 43:207–232PubMedGoogle Scholar
  61. Mays LE, Sparks DL (1980b) Saccades are spatially, not retinocentrically, coded. Science 208:1163–1165PubMedGoogle Scholar
  62. Mikami A, Ito S-I, Kubota K (1982) Modifications of neuron activities of the dorsolateral prefrontal cortex during extrafoveal attention. Behav Brain Res 5:219CrossRefPubMedGoogle Scholar
  63. Mishkin M, Ungerleider LG (1982) Contribution of striate inputs to the visuospatial functions of parietoprecoccipital cortex in monkeys. Behav Brain Res 6:57–77CrossRefPubMedGoogle Scholar
  64. Mishkin M, Ungerleider LG, Macko KA (1983) Object vision and spatial vision: two cortical pathways. Trends Neurosci 6:414–417CrossRefGoogle Scholar
  65. Moran J, Desimone R (1985) Selective attention gates visual processing in area V4 and the inferior temporal cortex of the macaque. Neurosci Abstr 364. 7:1245Google Scholar
  66. Motter BC, Mountcastle VB (1981) The functional properties of the lightsensitive neurons of the posterior parietal cortex studied in waking monkeys — foveal sparing and opponent vector organization. J Neurosci 1:3PubMedGoogle Scholar
  67. Mountcastle VB, Andersen RA, Motter BC (1981) The influence of attentive fixation upon the excitability of the light-sensitive neurons of the posterior parietal cortex. J Neurosci 1:1218–1235PubMedGoogle Scholar
  68. Newsome WT, Wurtz RH, Duersteler MR, Mikami A (1985) Deficits in visual motion processing following ibotenic acid lesions of the middle temporal visual area of the macaque monkey. J Neurosci 5:825–840PubMedGoogle Scholar
  69. Newsome WT, Wurtz RH, Duersteler MR, Mikami A (1985) Punctate chemical lesions of striate cortex in the macaque monkey: effect on visually guided saccades. Exp Brain Res 58:393–399CrossRefGoogle Scholar
  70. Nuwer MR, Pribram KH (1979) Role of the inferotemporal cortex in visual selective attention. Electroenceph Clin Neurophysiol 46:389–400CrossRefPubMedGoogle Scholar
  71. Petersen SE, Robinson DL, Keys W (1985) Pulvinar nuclei of the behaving rhesus monkey: visual responses and their modulation. J Neurophysiol 54:867–886PubMedGoogle Scholar
  72. Petrides M, Pandya DN (1984) Projections to the frontal cortex from the posterior parietal region in the rhesus monkey. J Comp Neurol 228:105–116CrossRefPubMedGoogle Scholar
  73. Pierrot-Deseilligny C, Gray F, Brunet P (1986) Infarcts of both inferior parietal lobules with impairment of visually guided eye movements, peripheral visual inattention and optic ataxia. Brain 109:81–97PubMedGoogle Scholar
  74. Posner MI, Walker JA, Friedrich FJ, Rafal RD (1984) Effects of parietal injury on covert orienting of attention. J Neurosci 4:1863–1874PubMedGoogle Scholar
  75. Remington R, Pierce L (1984) Moving attention: evidence for time-invariant shifts of visual selective attention. Percept Psychophys 35:393–399PubMedGoogle Scholar
  76. Reulen JPH (1984) Latency of visually evoked saccadic eye movements. I. Saccadic latency and the facilitation model. Biol Cybern 50:251–262CrossRefPubMedGoogle Scholar
  77. Reulen RPH (1984) Latency of visually evoked saccadic eye movements. II. Temporal properties of the facilitation mechanism. Biol Cybern 50:263CrossRefPubMedGoogle Scholar
  78. Richmond BJ, Wurtz RH (1980) Vision during saccadic eye movements. II. A corollary discharge to monkey superior colliculus. J Neurophysiol 43:1156–1167PubMedGoogle Scholar
  79. Richmond BJ, Wurtz RH, Sato (1983) Visual responses of inferior temporal neurons in awake rhesus monkey. J Neurophysiol 50:1415–1432PubMedGoogle Scholar
  80. Rizzolatti G, Scandolara C, Matelli M, Gentilucci M (1981) Afferent properties of periarcuate neurons in macaque monkeys. II. Visual responses. Behav Brain Res 2:147–163CrossRefPubMedGoogle Scholar
  81. Robinson DA (1972) Eye movements evoked by collicular stimulation in the alert monkey. Vis Res 12:1795–1808CrossRefPubMedGoogle Scholar
  82. Robinson DL, Baizer JS, Dow BM (1980) Behavioral enhancement of visual responses of prestriate neurons of the rhesus monkey. Invest Ophthalmol Vis Sci 19:1120–1123PubMedGoogle Scholar
  83. Robinson DL, Goldberg ME, Stanton GB (1978) Parietal association cortex in the primate: sensory mechanisms and behavioral modulations. J Neurophysiol 41:910–932PubMedGoogle Scholar
  84. Robinson DL, Petersen SE (1985) Responses of pulvinar neurons to real and self-induced stimulus movement. Brain Res 338:392–394CrossRefPubMedGoogle Scholar
  85. Robinson DL, Wurtz RH (1976) Use of an extraretinal signal by monkey superior colliculus neurons to distinguish real from self-induced stimulus movements. J Neurophysiol 39:852–870PubMedGoogle Scholar
  86. Sagi D, Julesz B (1985) “Where” and “what” in vision. Science 228:1217–1219PubMedGoogle Scholar
  87. Sakata H, Shibutani H, Kawano K (1980) Spatial properties of visual fixation neurons in posterior parietal association cortex of the monkey. J Neurophysiol 43:1654–1672PubMedGoogle Scholar
  88. Sandell JH, Schiller PH, Maunsell JHR (1984) The effect of superior colliculus and frontal eye field lesions on saccadic latency in the monkey. Perception 13:A6Google Scholar
  89. Saslow MG (1967) Effects of components of displacement-step stimuli upon latency of saccadic eye movements. J Opt Soc Am 57:1024–1029PubMedGoogle Scholar
  90. Schiller PH (1977) The effect of superior colliculus ablation on saccades elicited by cortical stimulation. Brain Res 122:154–156CrossRefPubMedGoogle Scholar
  91. Schiller PH, True SD, Conway JL (1979) Paired stimulation of the frontal eye fields and the superior colliculus of the rhesus monkey. Brain Res 179:162–164CrossRefPubMedGoogle Scholar
  92. Schiller PH, Sandell JH (1983) Interactions between visually and electrically elicited saccades before and after superior colliculus and frontal eye field ablations in the rhesus monkey. Exp Brain Res 49:381–392CrossRefPubMedGoogle Scholar
  93. Schiller PH, Stryker M (1972) Single-unit recording and stimulation in superior colliculus of the alert rhesus monkey. J Neurophysiol 35:179–196Google Scholar
  94. Schiller PH, True SD, Conway JL (1979) Paired stimulation of the frontal eye fields and the superior colliculus of the rhesus monkey. Brain Res 179:162–164CrossRefPubMedGoogle Scholar
  95. Schlag J, Schlag-Rey M (1984) Visuomotor functions of central thalamus in monkey. II. Unit activity related to visual events, targeting, and fixation. J Neurophysiol 51:1175–1195PubMedGoogle Scholar
  96. Schlag J, Schlag-Rey M (1985) Eye fixation units in the supplementary eye field of monkey. Neurosci Abstr 25. 23:82Google Scholar
  97. Schwartz ML, Goldman-Rakic PS (1984) Callosal and intrahemispheric connectivity of the prefrontal association cortex in rhesus monkey: relation between intraparietal and principal sulcal cortex. J Comp Neurol 226:403420CrossRefGoogle Scholar
  98. Shibutani H, Sakata H, Hyvaerinen J (1984) Saccade and blinking evoked by microstimulation of the posterior parietal association cortex of the monkey. Exp Brain Res 55:1–8CrossRefPubMedGoogle Scholar
  99. Singer W, Zihl J, Poeppel E (1977) Subcortical control of visual thresholds in humans: evidence of modality specific and retinotopically organized mechanisms of selective attention. Exp Brain Res 29:173–190CrossRefPubMedGoogle Scholar
  100. Sparks DL, Mays LE (1983) Spatial localization of saccade targets. I. Compensation for stimulation-induced perturbations in eye position. J Neurophysiol 49:45–63PubMedGoogle Scholar
  101. Sparks DL, Porter JD (1983) Spatial localization of saccade targets. II. Activity of superior colliculus neurons preceding compensatory saccades. J Neurophysiol 49:64–74PubMedGoogle Scholar
  102. Steinmetz MA, Motter BC, Mountcastle VB (1985) Attentive fixation influences differentially the responses of visual neurons of prestriate and parietal areas of the cerebral cortex. Neurosci Abstr 297/9:1012Google Scholar
  103. Ungerleider LG, Mishkin M (1982) Two cortical visual systems. In: Ingle DJ, Goodale MA, and Nansfield RJW (eds) Analyses of visual behavior. MIT Press, Cambridge, pp 549–586Google Scholar
  104. Wagman JH, Krieger HP, Bender MB (1958) Eye movements elicited by surface and depth stimulation of the occipital lobe of macaca mulatta. J Comp Neurol 109:169–193CrossRefPubMedGoogle Scholar
  105. Werth R, von Cramon D, Zihl J (1986) Neglect: Phänomene halbseitiger Vernachlässigung nach Hirnschädigung. Fortschr Neurol Psychiat 54:21–32PubMedGoogle Scholar
  106. Wurtz RH (1969) Comparison of effects of eye movements and stimulus movements on striate cortex neurons of the monkey. J Neurophysiol 32:987–994PubMedGoogle Scholar
  107. Wurtz RH, Albano JE (1980) Visual-motor function of the primate superior colliculus. Ann Rev Neurosci 3:189–226CrossRefPubMedGoogle Scholar
  108. Wurtz RH, Goldberg ME (1972) The primate superior colliculus and the shift of visual attention. Invest Ophthalmol 11:441–450PubMedGoogle Scholar
  109. Wurtz RH, Goldberg ME, Robinson DL (1980) Behavioral modulation of visual responses in the monkey: stimulus selection for attention and movement. Progr Psychobiol Physiol Psychol 9:43–83Google Scholar
  110. Wurtz RH, Mohler CW (1976a) Organization of monkey superior colliculus: enhanced visual response of superficial layer cells. J Neurophysiol 39:745–762PubMedGoogle Scholar
  111. Wurtz RH, Mohler CW (1976b) Enhancement of visual responses in monkey striate cortex and frontal eye fields. J Neurophysiol 39:766–772PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Burkhart Fischer
    • 1
  1. 1.Abteilung Klinische Neurologie und NeurophysiologieUniversität FreiburgFreiburgFRG

Personalised recommendations