Advertisement

Knowledge based support for the management of statistical databases

  • Knut M. Wittkowski
Invited Lectures
Part of the Lecture Notes in Computer Science book series (LNCS, volume 339)

Abstract

It is often indicated that the relational model should be extended to conform with the needs of statistical analyses (GHOSH 1988). The examples demonstrate that so-called ‘relational models’ in common DBMS may in some cases even be to rich. Thus it is not sufficient, to extend a DBMS for commercial applications by statistical operators. In some cases, it may even be necessary to restrict the set of operators. In order to check semantically integrity constraints, a DBMS for statistical applications needs knowledge on the lattice structure of observational units (design knowledge) and on the concepts underlying the observational units and attributes (model knowledge). This type of knowledge has so far been not considered, because it is of little importance for commercial applications. For statistical applications, however, it is necessary to avoid semantically meaningless analyses and to assist the user in performing analyses.

Keywords

Commercial Application Statistical Application Integrity Constraint Relational Algebra Database Management System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BASSIOUNI MA, LLEWELLYN M (1988) Handling Time in Query Languages. In: RAFANELLI M, KLENSIN J, SVENSSON P (eds. 1988, in press)Google Scholar
  2. BLUM RL (1982) Discovery and representation of causal relationships from a large time-oriented clinical database: The RX project. Berlin: SpringerGoogle Scholar
  3. BOARDMAN TJ (ed. 1986) Computer Science and Statistics. Washington, DC: ASAGoogle Scholar
  4. CODD EF (1970) A relational model of data for large shared data banks. Comm. ACM 13:377–387Google Scholar
  5. CUBITT R, COOPER B, OZSOYOGLU G (eds. 1986) Proceedings of the third international workshop on statistical and scientific database management. CEPS/INSTEAD, Case Postale 2, L-7201 WALFERDANGEGoogle Scholar
  6. CUBITT R, WESTLAKE A (eds. 1987a) Report on the third international workshop on statistical and scientific database management. Luxembourg, 22–23 July 1986. Statistical Software Newsletter 13, 3–27Google Scholar
  7. CUBITT R, WESTLAKE A (1987b) Introduction. In: CUBITT R, WESTLAKE A (eds. 1987a)Google Scholar
  8. ELLIMAN AD, WITTKOWSKI KM (1987) The impact of expert systems on statistical database management. In: CUBITT R, WESTLAKE A (eds. 1987a) 14–18Google Scholar
  9. FORTUNATO E, RAFANELLI M, RICCI FL, SEBASTIO A (1986) An algebra for statistical data. In: CUBITT R, COOPER B, OZSOYOGLU G (eds. 1986) 122–134Google Scholar
  10. GHOSH SP (1987) Category numerical relational operations for statistical database management. In: RAFANELLI M, KLENSIN J, SVENSSON P (eds. 1988, in press)Google Scholar
  11. HAJEK P, IVANEK J (1982) Artificial intellicence and data analysis. In: CAUSSINUS H, ETTINGER P, TOMASSONE R (eds.) COMPSTAT 1982 — Part I, proceedings in computational statistics. Wien: Physica, 54–60Google Scholar
  12. OLDFORD RW, PETERS SC (1986) Object-oriented data representations for statistical data analysis. In: DEANTONI R, LAURO N, RIZZI A (eds.) COMPSTAT 86. Heidelberg: PhysicaGoogle Scholar
  13. OLKEN F (1986) Physical database support for scientific and statistical database management. In: CUBITT R, COOPER B, OZSOYOGLU G (eds. 1986) 44–60Google Scholar
  14. PREGIBON D, GALE WA (1984) REX: an expert system for regression analysis. In: HAVRANEK T, SIDAK Z, NOVAK M (eds.) COMPSTAT 84. Wien: Physica, 242–248.Google Scholar
  15. RAFANELLI M, KLENSIN J, SVENSSON P (eds. 1988) Proceedings of the fourth international workshop on statistical and scientific database management. (in press)Google Scholar
  16. SAS INSTITUTE INC. (1982) SAS user's guide: basics.Google Scholar
  17. SAS INSTITUTE INC. (1982) SAS user's guide: statistics. SAS Inst., Box 8000, Cary, NC 27511, USAGoogle Scholar
  18. THISTED RA (1986) Tools for data analysis management. In: BOARDMAN TJ (ed. 1986) 152–159Google Scholar
  19. WITTKOWSKI KM (1985) Ein Expertensystem zur Datenhaltung und Methodenauswahl für statistische Anwendungen. Stuttgart: Ph.D. Dissertation; Buchh. Hartinger, Xantener Str. 14, D-1000 Berlin 15Google Scholar
  20. WITTKOWSKI KM (1986) Generating and testing statistical hypotheses: Strategies for knowledge engineering. In: HAUX R (ed.) Statistical expert systems. Stuttgart, FRG: Fischer 139–154Google Scholar
  21. WITTKOWSKI KM (1986) An expert system for testing statistical hypotheses. In: BOARDMAN TJ (ed. 1986) 438–443Google Scholar
  22. WITTKOWSKI KM (1988) Intelligente Benutzerschnittstellen für statistische Auswertungen. In: FAULBAUM F, UEHLINGER HM (eds.) Fortschritte der Statistik-Software 1. Stuttgart, FRG: Gustav Fischer 212–225 (in German)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Knut M. Wittkowski
    • 1
  1. 1.Department of Medical BiometryEberhard-Karls-UniversityTübingenFed. Rep. Germany

Personalised recommendations