Skip to main content

Synthesis and evaluation of metal-containing polymers

  • Chapter
  • First Online:
Book cover Photoconducting Polymers/Metal-Containing Polymers

Part of the book series: Advances in Polymer Science ((POLYMER,volume 115))

Abstract

The review aims at highlighting the significant developments during the last decade (1980–1991) in the field of metal-containing polymers with special reference to synthetic methodologies used and evaluation of various properties. The synthetic procedures so far adopted include (a) polymerization/copolymerization of metal-complexed monomer moieties (b) anchoring of metal complexes on preformed polymers (c) plasma polymerization (d) doping and (e) mechanochemical synthesis. The variety of monomer/polymer systems studied under the above procedures include the acrylics, styrene derivatives heterocyclics and miscellaneous polycondensates such as polyimides, polyamideimides, polyethylene oxides, metal porphorazines, phthalocyanines, crown-ethers, Schiff's bases and liquid crystal polymer systems.

The review also highlights, how and to what extent metal ion incorporation can modify the essential bulk properties of the base polymer — such as thermal stability, dielectric, conductivity and other physicochemical characteristics.

In general, the thermal stability of metal-containing polymer systems is relatively enchanced compared to that of the bulk polymer. Various factors including size and concentration of the metal ions, and crystal field stabilization energy of the anchored metal complexes influence the stability to different extents.

The conductivity of many metal modified systems is reportedly enhanced due to various factors such as charge transfer between metal ions and the electron-rich heteroatoms, elimination of impurities, and changes in the transport number of cations and anions due to environmental changes in the solid electrolytes. Even interesting cases have been reported where a polymer film can reach the electronically conducting metallic level by cis-trans isomerization.

Metal containing polymers have emerged as a new generation material with tremendous potential in fields like superconducting materials, ultra-high strength materials, liquid crystals and biocompatible polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arimato FS, Haven AC (1955) J Am Chem Soc 77: 6295

    Google Scholar 

  2. Pittman CU, Sheats JE, Carraher CE, Zeldin M, Currel B (1989) Procs ACS Division of Polymeric Materials (Miami Beach Meeting) 61: 91; Biswas M, Moitra S (1986) Polym Prepr 27: 76.

    Google Scholar 

  3. Sharma PR, Tripathi KC, Gupta HM, (1980) J Polymer Sci, Polymer Chemistry Ed 18: 2609; Dharia JR, Pathak CP, Babu GN, Gupta SK (1988) J Polymer Sci, Polymer Chemistry Ed 26: 595

    Google Scholar 

  4. Itoh H, Kondo S, Masuda E, Hanabusa K, Sherai H, Najo N (1986) Makromol Chem, Rapid Communications 7: 585

    Google Scholar 

  5. Milovskaya EB, Zamoiskaya LV (1982) Polymer 23: 891

    Google Scholar 

  6. Gressiar JC, Levesque G, Patin H, Varret F (1983) Macromolecules 16: 1577

    Google Scholar 

  7. Wohlre D, Bohlen H, Meyer G (1984) Polymer Bulletin 11: 143

    Google Scholar 

  8. Kurimura Y, Vehino Y, Ohta F, Saito C, Koide M, Tsuchida E (1981) Polymer J 13: 247

    Google Scholar 

  9. Yamagishi A, Nitta K (1982) Polymer 23: 1177

    Google Scholar 

  10. Walsh DJ, Crosby P, Dalton RF (1983) Polymer 24: 423

    Google Scholar 

  11. Bai RK, Zong HJ (1984) Makromol Chem, Rapid Communications 5: 501

    Google Scholar 

  12. Guo XX, Zong HJ (1984) Makromol Chem, Rapid Communications 5: 507

    Google Scholar 

  13. Hirasawa E, Hamazaki H, Tadano K, Yano S (1991) J of Applied Polymer Sci 42: 621

    Google Scholar 

  14. Neckers DC (1985) In: Sheats JE, Carraher CE Jr, Pitman CU Jr (eds) Metal-containing polymer sytems. Plenum, New York, p 385

    Google Scholar 

  15. Phillips HH, Kenstle JF, Adoock JL (1981) J Polymer Sci, Polymer Chemistry Ed 19: 175

    Google Scholar 

  16. Kaneko M, Ochiai M, Kunosita K, Yamada A (1982) J Polymer Sci, Polymer Chemistry Ed 20: 1011

    Google Scholar 

  17. Kratz MR, Hendricker DJ (1986) Polymer 27: 1641

    Google Scholar 

  18. Biswas M, Mukherjee A (1992) J Appl Polymer Sci 46: 1453

    Google Scholar 

  19. Kaneko M, Vamada A, Tsuchida E, Kurimura YJ (1982) Polymer Sci, Polymer Letters 20: 593

    Google Scholar 

  20. Veba Y, Zhu KJ, Banks E, Okamoto Y (1982) J Polymer Sci, Polymer Chemistry Ed 20: 1272

    Google Scholar 

  21. Welleman JA, Hulsberger FB, Reedijk J (1981) J Makromol Chem 82: 785

    Google Scholar 

  22. Kise H, Sata H (1985) Makromol Chem 186: 2449

    Google Scholar 

  23. Davies AJ, Sood A (1983) Makromol Chem Rapid Communications 4: 777

    Google Scholar 

  24. Tatarsky D, Khon DH, Caie M (1980) J Polymer Sci 18: 1387

    Google Scholar 

  25. Kabayashi S, Suzuki M, Saegusa T (1983) Macromolecules 16: 1010

    Google Scholar 

  26. Ning YP, Mark EJ, Iwamoto N, Eichinger E (1985) Macromolecules 18: 55

    Google Scholar 

  27. Shimidzu T, Izaki K, Akai Y, Jyoda T (1981) Polymer J 13: 889

    Google Scholar 

  28. Sunil K, Furue M, Nozakura SH (1984) J Polymer Sci, Polymer Chemistry Ed 22: 3779

    Google Scholar 

  29. Furue M, Sunil K, Nazakura SH (1982) J Polymer Sci, Polymer Letters Ed 20: 291

    Google Scholar 

  30. Nishide H, Tsuchida E (1981) J Polymer Sci, Polymer Chemistry Ed 19: 835

    Google Scholar 

  31. Brunlet T, Gelbard G, Guyot A (1981) Polymer Bulletin 5: 145

    Google Scholar 

  32. Bekturov EA, Kudaibergenov SE, Sagitov VB (1986) Polymer 27: 1269

    Google Scholar 

  33. Tsuchida E, Nishide H, Yokeeyama H, Inove H, Shirai T (1984) Polymer J 16: 325

    Google Scholar 

  34. Bekturov EA, Kudaibergenov SE, Kanapyanova GS, Kurmanlaeva AA (1984) Polymer Communications 25: 220

    Google Scholar 

  35. Sato M, Shindo H, Kondo K, Takenioto K (1980) J Polymer Sci, Polymer Chemistry Ed 18: 101

    Google Scholar 

  36. Gupta SN, Neckers DC (1982) J Polymer Sci Polym Chem Ed 20: 1609

    Google Scholar 

  37. Kato M, Nishide H, Tsuchida E, Sasaki T (1981) J Polymer Sci 19: 1803

    Google Scholar 

  38. Broze G, Jerome R, Teyssie P (1982) J Polymer Sci, Polymer Chemistry Ed 21: 593

    Google Scholar 

  39. Matsuda H, Takechi S (1991) J of Polymer Sci, Polymer Chemistry Ed 29: 83

    Google Scholar 

  40. Yen C-C, Huang CJ, Chang T-C (1991) J of Applied Polymer Sci 42: 439

    Google Scholar 

  41. Huang CJ, Yen C-C, Chang T-C (1991) J of Applied Polymer Sci 42: 2237

    Google Scholar 

  42. Barbucci R, Casolaro M, Ferrute P, Barone V (1982) Polymer 23: 148

    Google Scholar 

  43. Rancourt JD, Taylor LT (1987) Macromolecules 20: 790

    Google Scholar 

  44. Furstch TA, Taylor LT, Fritz TW, Fortner G, Khor E (1982) J Polymer Sci, Polymer Chemistry 20: 1287

    Google Scholar 

  45. Bergmeister, Rancaert JD, Taylor LT (1990) Chemistry of Materials 2: 640

    Google Scholar 

  46. Taylor LT, Rancourt JD (1990) In: Sheats J, et al. (eds) Inorganic and metal-containing polymeric materials. Plenum, New York, p 109

    Google Scholar 

  47. Kothandaram H, Venkatarao K, Raghavan A, Chandrasekaran V (1985) Polymer Bulletin 13: 353

    Google Scholar 

  48. Dirk CW, Bousseau M, Barret PH, Heeger AJ, Wudl F (1986) Macromolecules 19: 266

    Google Scholar 

  49. Majumdar A, Biswas M (1991) Polymer Bulletin 26: 145

    Google Scholar 

  50. Majumdar A, Biswas M (1991) Polymer Bulletin 26: 151

    Google Scholar 

  51. Tahara T, Seto K, Takahashi S (1987) Polymer J 19: 301

    Google Scholar 

  52. Payne DR, Wright PK (1982) Polymer 23: 690

    Google Scholar 

  53. Albinsson I, Mellander BE, Stevens JR (1991) Polymer 32: 2712

    Google Scholar 

  54. Chiang CK, Baner BJ, Brider KM, Davis GT (1987) Polymer Communications 28: 34

    Google Scholar 

  55. Watanale M, Nagano S, Sanui K, Ogata N (1986) Polymer J 18: 809

    Google Scholar 

  56. Lee CC, Wright PV (1982) Polymer 23: 681 and references cited therein

    Google Scholar 

  57. Bannister DJ, Davies GR, Ward IM, Melntyre JE (1984) Polymer 25: 1291

    Google Scholar 

  58. Chiang CK, Davies GT, Harding CA, Takahashi T (1985) Macromolecules 18: 825, and references cited therein

    Google Scholar 

  59. Harris CS, Shriver DF, Ratner MA (1986) Macromolecules 19: 987

    Google Scholar 

  60. Giles RMJ, Greenhall PM (1986) Polymer Communications 27: 360

    Google Scholar 

  61. Wang B, Wilkes GL (1991) J Polymer Sci, Polymer Chemistry Ed 29: 905

    Google Scholar 

  62. Wang B, Wilkes GL, Hedrick JC, Leptak SC, McGrath J-E (1991) Macromolecules 24: 3449

    Google Scholar 

  63. Hasegawa E, Kanayama T, Tsuchida E (1977) J Polymer Sci, Polymer Chemistry Ed 15: 3039

    Google Scholar 

  64. Yamakita H, Hayakawa K (1980) J Polymer Sci, Polymer Letters Ed 18: 529

    Google Scholar 

  65. Finkenaur AL, Dickinson LC, Chien JCW (1983) Macromolecules 16: 728

    Google Scholar 

  66. Wohrle D, Krawczyk G (1986) Makromol Chem 187: 2535

    Google Scholar 

  67. Wohrle D, Krawczyk G, Paliuras M (1988) Makromol Chem 189: 1001

    Google Scholar 

  68. Wohrle D, Krawczyk G, Paliuras M (1988) Makromol Chem 189: 1013

    Google Scholar 

  69. Achar BN, Fohlen GM, Parker JA (1985) J Polymer Sci, Polymer Chem Ed 23: 801

    Google Scholar 

  70. Lin JWD, Dudek LP (1985) J Polymer Sci, Polymer Chemistry Ed 23: 1579

    Google Scholar 

  71. Shirai H, Takemae Y, Kobayashi K, Kondo Y, Hirabaru O, Hojo N (1984) Makromol Chem 185: 1395

    Google Scholar 

  72. Shirai M, Orikata T, Tanaka M (1983) Makromol Chem Rapid Communications 4: 65

    Google Scholar 

  73. Shirai M, Veda A, Tanaka M (1985) Makromol Chem 186: 2619

    Google Scholar 

  74. Sinta R, Lamb B, Smid J (1983) Macromolecules 16: 1383

    Google Scholar 

  75. Jin J-II, Lee MS, Kim SJ (1984) Polymer J 16: 547

    Google Scholar 

  76. Aeissen H, Wohrle D (1981) Makromol Chem 182: 2961

    Google Scholar 

  77. Carfagana C, Caruso U, Roviello A, Sirigu A (1987) Makromol Chem, Rapid Communications 8: 345

    Google Scholar 

  78. Caruso V, Roviello A, Sirigu A (1991) Macromolecules 24: 2606

    Google Scholar 

  79. Inagaki N, Yagi T, Katsuura K (1982) Eur Polym J 18: 621

    Google Scholar 

  80. Inagaki N, Ohkuto J (1991) J of Applied Polymer Sci 43: 793

    Google Scholar 

  81. Kay E, Dilks A, Hetzler U (1979) J Macromol Sci Chem 12: 1393

    Google Scholar 

  82. Asano Y, (1983) Thin Solid Films 8: 1

    Google Scholar 

  83. Munro HS, Till C (1984) J Polymer Sci, Polymer Chem Ed 22: 3933

    Google Scholar 

  84. Munro HS, Eaves JG (1985) J Polymer Sci, Polymer Chemistry Ed 23: 507

    Google Scholar 

  85. Cao Y, Guo K, Wan M, Wang P, Qian R, Wang F, Zhao X (1983) Polymer Communications 24: 300

    Google Scholar 

  86. Rachdi F, Bernier P, Faulques E, Lefrant S, Schuel F (1982) Polymer 23: 173

    Google Scholar 

  87. Chen Z, Shen Z, Chen C, Zhao Y, Yang M (1987) Makromol Chem 188: 349

    Google Scholar 

  88. Begin D, Demai JJ, Vangeliste R, Billand D (1986) Polymer Communications 27: 117

    Google Scholar 

  89. Antoun S, Gaghon DR, Karasz FE, Lenz RW (1986) Polymer Bulletin 15: 181

    Google Scholar 

  90. Chance R, Shacklette LW, Eckhardt H, Sowa JM, Elsenbaumer RL, Ivory DM, MIller GG, Baughman RH (1981) In: Seymour RB (ed) Conductive polymers. Plenum, New York, p 125

    Google Scholar 

  91. Shirota Y, Kakuta T, Mikaya H (1984) Makromol Chem, Rapid Communications 5: 337

    Google Scholar 

  92. Makenbusch M, Weiners G (1983) Makromol Chem, Rapid Communications 4: 555

    Google Scholar 

  93. Simionescu C, Opera CV, Negulianu C (1980) Makromol Chem 181: 1579

    Google Scholar 

  94. Addeo A, Carfagha C, Nicodema L, Nicolais L (1983) J Polymer Sci, Polymer Letters Ed 21: 317

    Google Scholar 

  95. Burrows HD, Ellis HA, Utah SI (1981) Polymer 22: 1740

    Google Scholar 

  96. Nassa LI (1970) In: Mark HF, Gaylord NG, Bikales NM (eds) Encyclopedia of polymer science and technology, vol 12. Interscience, New York, p 725

    Google Scholar 

  97. Bobitaille C, Prud'honme J (1983) Macromolecules 16: 665

    Google Scholar 

  98. Ezzell SA, Furtsch TA, Khor E, Taylor LT (1983) J Polymer Science, Polymer Chemistry Ed 21: 865

    Google Scholar 

  99. Lin WP, Dudek LP (1985) J Polymer Sci, Polym Chem Ed 23: 1589

    Google Scholar 

  100. Grodzinski JJ (1980) Makromol Chem 181: 2441

    Google Scholar 

  101. Tawansi A, Soliman MA, Kinawy N, Badr SIM (1988) Polymer Bulletin 19: 289

    Google Scholar 

  102. Biswas M, Moitra S (1989) J Appl Polymer Sci 38: 1243

    Google Scholar 

  103. Hiirai H, Shigekura M, Komiyama M (1986) Makromol Chem, Rapid Communications 7: 351

    Google Scholar 

  104. Rolland M, Aldissi M, Schue F (1982) Polymer 23: 834

    Google Scholar 

  105. Reynolds JR, Lillya CP, Chien CW (1987) Macromolecules 20: 1184

    Google Scholar 

  106. Fang SB, Zhang P, Jiang YY (1988) Polymer Bulletin 19: 81

    Google Scholar 

  107. Takeoka S, Horiuchi K, Yamagata S, Tsuchida E (1991) Macromolecules 24: 2003

    Google Scholar 

  108. Kaneko M, Yamada A, (1985) In: Sheats JE, Carraher CE Jr, Pittman CU Jr (eds) Metal containing polymer systems. Plenum, New York, p 249

    Google Scholar 

  109. Shirai H, Maruyama A, Takano J, Kobayshi K, Hojo N, Urushinodo K (1980) Makromol Chem 181: 565

    Google Scholar 

  110. Shirai H, Maruyama A, Kobayashi K, Nobumasa H (1980) Makromol Chem 181: 575

    Google Scholar 

  111. Moitra S, Biswas M, Uryu T (1989) Polymer Communications 30: 225

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag

About this chapter

Cite this chapter

Biswas, M., Mukherjee, A. (1994). Synthesis and evaluation of metal-containing polymers. In: Photoconducting Polymers/Metal-Containing Polymers. Advances in Polymer Science, vol 115. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0026088

Download citation

  • DOI: https://doi.org/10.1007/BFb0026088

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57476-7

  • Online ISBN: 978-3-540-48192-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics