Advertisement

Synthesis and evaluation of metal-containing polymers

  • Mukul Biswas
  • Amit Mukherjee
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 115)

Abstract

The review aims at highlighting the significant developments during the last decade (1980–1991) in the field of metal-containing polymers with special reference to synthetic methodologies used and evaluation of various properties. The synthetic procedures so far adopted include (a) polymerization/copolymerization of metal-complexed monomer moieties (b) anchoring of metal complexes on preformed polymers (c) plasma polymerization (d) doping and (e) mechanochemical synthesis. The variety of monomer/polymer systems studied under the above procedures include the acrylics, styrene derivatives heterocyclics and miscellaneous polycondensates such as polyimides, polyamideimides, polyethylene oxides, metal porphorazines, phthalocyanines, crown-ethers, Schiff's bases and liquid crystal polymer systems.

The review also highlights, how and to what extent metal ion incorporation can modify the essential bulk properties of the base polymer — such as thermal stability, dielectric, conductivity and other physicochemical characteristics.

In general, the thermal stability of metal-containing polymer systems is relatively enchanced compared to that of the bulk polymer. Various factors including size and concentration of the metal ions, and crystal field stabilization energy of the anchored metal complexes influence the stability to different extents.

The conductivity of many metal modified systems is reportedly enhanced due to various factors such as charge transfer between metal ions and the electron-rich heteroatoms, elimination of impurities, and changes in the transport number of cations and anions due to environmental changes in the solid electrolytes. Even interesting cases have been reported where a polymer film can reach the electronically conducting metallic level by cis-trans isomerization.

Metal containing polymers have emerged as a new generation material with tremendous potential in fields like superconducting materials, ultra-high strength materials, liquid crystals and biocompatible polymers.

Keywords

Polymer Chemistry Phosphine Oxide Transport Number Polymethacrylic Acid Mechanochemical Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arimato FS, Haven AC (1955) J Am Chem Soc 77: 6295Google Scholar
  2. 2.
    Pittman CU, Sheats JE, Carraher CE, Zeldin M, Currel B (1989) Procs ACS Division of Polymeric Materials (Miami Beach Meeting) 61: 91; Biswas M, Moitra S (1986) Polym Prepr 27: 76.Google Scholar
  3. 3.
    Sharma PR, Tripathi KC, Gupta HM, (1980) J Polymer Sci, Polymer Chemistry Ed 18: 2609; Dharia JR, Pathak CP, Babu GN, Gupta SK (1988) J Polymer Sci, Polymer Chemistry Ed 26: 595Google Scholar
  4. 4.
    Itoh H, Kondo S, Masuda E, Hanabusa K, Sherai H, Najo N (1986) Makromol Chem, Rapid Communications 7: 585Google Scholar
  5. 5.
    Milovskaya EB, Zamoiskaya LV (1982) Polymer 23: 891Google Scholar
  6. 6.
    Gressiar JC, Levesque G, Patin H, Varret F (1983) Macromolecules 16: 1577Google Scholar
  7. 7.
    Wohlre D, Bohlen H, Meyer G (1984) Polymer Bulletin 11: 143Google Scholar
  8. 8.
    Kurimura Y, Vehino Y, Ohta F, Saito C, Koide M, Tsuchida E (1981) Polymer J 13: 247Google Scholar
  9. 9.
    Yamagishi A, Nitta K (1982) Polymer 23: 1177Google Scholar
  10. 10.
    Walsh DJ, Crosby P, Dalton RF (1983) Polymer 24: 423Google Scholar
  11. 11.
    Bai RK, Zong HJ (1984) Makromol Chem, Rapid Communications 5: 501Google Scholar
  12. 12.
    Guo XX, Zong HJ (1984) Makromol Chem, Rapid Communications 5: 507Google Scholar
  13. 13.
    Hirasawa E, Hamazaki H, Tadano K, Yano S (1991) J of Applied Polymer Sci 42: 621Google Scholar
  14. 14.
    Neckers DC (1985) In: Sheats JE, Carraher CE Jr, Pitman CU Jr (eds) Metal-containing polymer sytems. Plenum, New York, p 385Google Scholar
  15. 15.
    Phillips HH, Kenstle JF, Adoock JL (1981) J Polymer Sci, Polymer Chemistry Ed 19: 175Google Scholar
  16. 16.
    Kaneko M, Ochiai M, Kunosita K, Yamada A (1982) J Polymer Sci, Polymer Chemistry Ed 20: 1011Google Scholar
  17. 17.
    Kratz MR, Hendricker DJ (1986) Polymer 27: 1641Google Scholar
  18. 18.
    Biswas M, Mukherjee A (1992) J Appl Polymer Sci 46: 1453Google Scholar
  19. 19.
    Kaneko M, Vamada A, Tsuchida E, Kurimura YJ (1982) Polymer Sci, Polymer Letters 20: 593Google Scholar
  20. 20.
    Veba Y, Zhu KJ, Banks E, Okamoto Y (1982) J Polymer Sci, Polymer Chemistry Ed 20: 1272Google Scholar
  21. 21.
    Welleman JA, Hulsberger FB, Reedijk J (1981) J Makromol Chem 82: 785Google Scholar
  22. 22.
    Kise H, Sata H (1985) Makromol Chem 186: 2449Google Scholar
  23. 23.
    Davies AJ, Sood A (1983) Makromol Chem Rapid Communications 4: 777Google Scholar
  24. 24.
    Tatarsky D, Khon DH, Caie M (1980) J Polymer Sci 18: 1387Google Scholar
  25. 25.
    Kabayashi S, Suzuki M, Saegusa T (1983) Macromolecules 16: 1010Google Scholar
  26. 26.
    Ning YP, Mark EJ, Iwamoto N, Eichinger E (1985) Macromolecules 18: 55Google Scholar
  27. 27.
    Shimidzu T, Izaki K, Akai Y, Jyoda T (1981) Polymer J 13: 889Google Scholar
  28. 28.
    Sunil K, Furue M, Nozakura SH (1984) J Polymer Sci, Polymer Chemistry Ed 22: 3779Google Scholar
  29. 29.
    Furue M, Sunil K, Nazakura SH (1982) J Polymer Sci, Polymer Letters Ed 20: 291Google Scholar
  30. 30.
    Nishide H, Tsuchida E (1981) J Polymer Sci, Polymer Chemistry Ed 19: 835Google Scholar
  31. 31.
    Brunlet T, Gelbard G, Guyot A (1981) Polymer Bulletin 5: 145Google Scholar
  32. 32.
    Bekturov EA, Kudaibergenov SE, Sagitov VB (1986) Polymer 27: 1269Google Scholar
  33. 33.
    Tsuchida E, Nishide H, Yokeeyama H, Inove H, Shirai T (1984) Polymer J 16: 325Google Scholar
  34. 34.
    Bekturov EA, Kudaibergenov SE, Kanapyanova GS, Kurmanlaeva AA (1984) Polymer Communications 25: 220Google Scholar
  35. 35.
    Sato M, Shindo H, Kondo K, Takenioto K (1980) J Polymer Sci, Polymer Chemistry Ed 18: 101Google Scholar
  36. 36.
    Gupta SN, Neckers DC (1982) J Polymer Sci Polym Chem Ed 20: 1609Google Scholar
  37. 37.
    Kato M, Nishide H, Tsuchida E, Sasaki T (1981) J Polymer Sci 19: 1803Google Scholar
  38. 38.
    Broze G, Jerome R, Teyssie P (1982) J Polymer Sci, Polymer Chemistry Ed 21: 593Google Scholar
  39. 39.
    Matsuda H, Takechi S (1991) J of Polymer Sci, Polymer Chemistry Ed 29: 83Google Scholar
  40. 40.
    Yen C-C, Huang CJ, Chang T-C (1991) J of Applied Polymer Sci 42: 439Google Scholar
  41. 41.
    Huang CJ, Yen C-C, Chang T-C (1991) J of Applied Polymer Sci 42: 2237Google Scholar
  42. 42.
    Barbucci R, Casolaro M, Ferrute P, Barone V (1982) Polymer 23: 148Google Scholar
  43. 43.
    Rancourt JD, Taylor LT (1987) Macromolecules 20: 790Google Scholar
  44. 44.
    Furstch TA, Taylor LT, Fritz TW, Fortner G, Khor E (1982) J Polymer Sci, Polymer Chemistry 20: 1287Google Scholar
  45. 45.
    Bergmeister, Rancaert JD, Taylor LT (1990) Chemistry of Materials 2: 640Google Scholar
  46. 46.
    Taylor LT, Rancourt JD (1990) In: Sheats J, et al. (eds) Inorganic and metal-containing polymeric materials. Plenum, New York, p 109Google Scholar
  47. 47.
    Kothandaram H, Venkatarao K, Raghavan A, Chandrasekaran V (1985) Polymer Bulletin 13: 353Google Scholar
  48. 48.
    Dirk CW, Bousseau M, Barret PH, Heeger AJ, Wudl F (1986) Macromolecules 19: 266Google Scholar
  49. 49.
    Majumdar A, Biswas M (1991) Polymer Bulletin 26: 145Google Scholar
  50. 50.
    Majumdar A, Biswas M (1991) Polymer Bulletin 26: 151Google Scholar
  51. 51.
    Tahara T, Seto K, Takahashi S (1987) Polymer J 19: 301Google Scholar
  52. 52.
    Payne DR, Wright PK (1982) Polymer 23: 690Google Scholar
  53. 53.
    Albinsson I, Mellander BE, Stevens JR (1991) Polymer 32: 2712Google Scholar
  54. 54.
    Chiang CK, Baner BJ, Brider KM, Davis GT (1987) Polymer Communications 28: 34Google Scholar
  55. 55.
    Watanale M, Nagano S, Sanui K, Ogata N (1986) Polymer J 18: 809Google Scholar
  56. 56.
    Lee CC, Wright PV (1982) Polymer 23: 681 and references cited thereinGoogle Scholar
  57. 57.
    Bannister DJ, Davies GR, Ward IM, Melntyre JE (1984) Polymer 25: 1291Google Scholar
  58. 58.
    Chiang CK, Davies GT, Harding CA, Takahashi T (1985) Macromolecules 18: 825, and references cited thereinGoogle Scholar
  59. 59.
    Harris CS, Shriver DF, Ratner MA (1986) Macromolecules 19: 987Google Scholar
  60. 60.
    Giles RMJ, Greenhall PM (1986) Polymer Communications 27: 360Google Scholar
  61. 61.
    Wang B, Wilkes GL (1991) J Polymer Sci, Polymer Chemistry Ed 29: 905Google Scholar
  62. 62.
    Wang B, Wilkes GL, Hedrick JC, Leptak SC, McGrath J-E (1991) Macromolecules 24: 3449Google Scholar
  63. 63.
    Hasegawa E, Kanayama T, Tsuchida E (1977) J Polymer Sci, Polymer Chemistry Ed 15: 3039Google Scholar
  64. 64.
    Yamakita H, Hayakawa K (1980) J Polymer Sci, Polymer Letters Ed 18: 529Google Scholar
  65. 65.
    Finkenaur AL, Dickinson LC, Chien JCW (1983) Macromolecules 16: 728Google Scholar
  66. 66.
    Wohrle D, Krawczyk G (1986) Makromol Chem 187: 2535Google Scholar
  67. 67.
    Wohrle D, Krawczyk G, Paliuras M (1988) Makromol Chem 189: 1001Google Scholar
  68. 68.
    Wohrle D, Krawczyk G, Paliuras M (1988) Makromol Chem 189: 1013Google Scholar
  69. 69.
    Achar BN, Fohlen GM, Parker JA (1985) J Polymer Sci, Polymer Chem Ed 23: 801Google Scholar
  70. 70.
    Lin JWD, Dudek LP (1985) J Polymer Sci, Polymer Chemistry Ed 23: 1579Google Scholar
  71. 71.
    Shirai H, Takemae Y, Kobayashi K, Kondo Y, Hirabaru O, Hojo N (1984) Makromol Chem 185: 1395Google Scholar
  72. 72.
    Shirai M, Orikata T, Tanaka M (1983) Makromol Chem Rapid Communications 4: 65Google Scholar
  73. 73.
    Shirai M, Veda A, Tanaka M (1985) Makromol Chem 186: 2619Google Scholar
  74. 74.
    Sinta R, Lamb B, Smid J (1983) Macromolecules 16: 1383Google Scholar
  75. 75.
    Jin J-II, Lee MS, Kim SJ (1984) Polymer J 16: 547Google Scholar
  76. 76.
    Aeissen H, Wohrle D (1981) Makromol Chem 182: 2961Google Scholar
  77. 77.
    Carfagana C, Caruso U, Roviello A, Sirigu A (1987) Makromol Chem, Rapid Communications 8: 345Google Scholar
  78. 78.
    Caruso V, Roviello A, Sirigu A (1991) Macromolecules 24: 2606Google Scholar
  79. 79.
    Inagaki N, Yagi T, Katsuura K (1982) Eur Polym J 18: 621Google Scholar
  80. 80.
    Inagaki N, Ohkuto J (1991) J of Applied Polymer Sci 43: 793Google Scholar
  81. 81.
    Kay E, Dilks A, Hetzler U (1979) J Macromol Sci Chem 12: 1393Google Scholar
  82. 82.
    Asano Y, (1983) Thin Solid Films 8: 1Google Scholar
  83. 83.
    Munro HS, Till C (1984) J Polymer Sci, Polymer Chem Ed 22: 3933Google Scholar
  84. 84.
    Munro HS, Eaves JG (1985) J Polymer Sci, Polymer Chemistry Ed 23: 507Google Scholar
  85. 85.
    Cao Y, Guo K, Wan M, Wang P, Qian R, Wang F, Zhao X (1983) Polymer Communications 24: 300Google Scholar
  86. 86.
    Rachdi F, Bernier P, Faulques E, Lefrant S, Schuel F (1982) Polymer 23: 173Google Scholar
  87. 87.
    Chen Z, Shen Z, Chen C, Zhao Y, Yang M (1987) Makromol Chem 188: 349Google Scholar
  88. 88.
    Begin D, Demai JJ, Vangeliste R, Billand D (1986) Polymer Communications 27: 117Google Scholar
  89. 89.
    Antoun S, Gaghon DR, Karasz FE, Lenz RW (1986) Polymer Bulletin 15: 181Google Scholar
  90. 90.
    Chance R, Shacklette LW, Eckhardt H, Sowa JM, Elsenbaumer RL, Ivory DM, MIller GG, Baughman RH (1981) In: Seymour RB (ed) Conductive polymers. Plenum, New York, p 125Google Scholar
  91. 91.
    Shirota Y, Kakuta T, Mikaya H (1984) Makromol Chem, Rapid Communications 5: 337Google Scholar
  92. 92.
    Makenbusch M, Weiners G (1983) Makromol Chem, Rapid Communications 4: 555Google Scholar
  93. 93.
    Simionescu C, Opera CV, Negulianu C (1980) Makromol Chem 181: 1579Google Scholar
  94. 94.
    Addeo A, Carfagha C, Nicodema L, Nicolais L (1983) J Polymer Sci, Polymer Letters Ed 21: 317Google Scholar
  95. 95.
    Burrows HD, Ellis HA, Utah SI (1981) Polymer 22: 1740Google Scholar
  96. 96.
    Nassa LI (1970) In: Mark HF, Gaylord NG, Bikales NM (eds) Encyclopedia of polymer science and technology, vol 12. Interscience, New York, p 725Google Scholar
  97. 97.
    Bobitaille C, Prud'honme J (1983) Macromolecules 16: 665Google Scholar
  98. 98.
    Ezzell SA, Furtsch TA, Khor E, Taylor LT (1983) J Polymer Science, Polymer Chemistry Ed 21: 865Google Scholar
  99. 99.
    Lin WP, Dudek LP (1985) J Polymer Sci, Polym Chem Ed 23: 1589Google Scholar
  100. 100.
    Grodzinski JJ (1980) Makromol Chem 181: 2441Google Scholar
  101. 101.
    Tawansi A, Soliman MA, Kinawy N, Badr SIM (1988) Polymer Bulletin 19: 289Google Scholar
  102. 102.
    Biswas M, Moitra S (1989) J Appl Polymer Sci 38: 1243Google Scholar
  103. 103.
    Hiirai H, Shigekura M, Komiyama M (1986) Makromol Chem, Rapid Communications 7: 351Google Scholar
  104. 104.
    Rolland M, Aldissi M, Schue F (1982) Polymer 23: 834Google Scholar
  105. 105.
    Reynolds JR, Lillya CP, Chien CW (1987) Macromolecules 20: 1184Google Scholar
  106. 106.
    Fang SB, Zhang P, Jiang YY (1988) Polymer Bulletin 19: 81Google Scholar
  107. 107.
    Takeoka S, Horiuchi K, Yamagata S, Tsuchida E (1991) Macromolecules 24: 2003Google Scholar
  108. 108.
    Kaneko M, Yamada A, (1985) In: Sheats JE, Carraher CE Jr, Pittman CU Jr (eds) Metal containing polymer systems. Plenum, New York, p 249Google Scholar
  109. 109.
    Shirai H, Maruyama A, Takano J, Kobayshi K, Hojo N, Urushinodo K (1980) Makromol Chem 181: 565Google Scholar
  110. 110.
    Shirai H, Maruyama A, Kobayashi K, Nobumasa H (1980) Makromol Chem 181: 575Google Scholar
  111. 111.
    Moitra S, Biswas M, Uryu T (1989) Polymer Communications 30: 225Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Mukul Biswas
    • 1
  • Amit Mukherjee
    • 1
  1. 1.Department of ChemistryIndian Institute of TechnologyKharagpurIndia

Personalised recommendations