Molding of polymers under conditions of vibration effects

  • M. L. Fridman
  • S. L. Peshkovsky
Conference paper
Part of the Advances in Polymer Science book series (POLYMER, volume 93)


This paper reviews the results of investigations into low-frequency mechanical and high-frequency (ultrasonic) vibration effects upon flowable polymeric systems, primarily, on molten commercial thermoplastics. We tried to systematize possible techniques to realize vibration in molding of polymers. Theoretical and experimental corroboration is provided for major effects obtained at cyclic (shear and bulk) strains of molten polymers and compositions based thereon. It is demonstrated that combined stress of polymeric media is attained under overlapping vibrations and this results in a decreased effective viscosity of the melts, a drop i the pressure required to extrude them through molding tools, increased critical velocities of unstable flow occurrence and a reduced load on the thrust elements of extruder screws.

Power consumption aspects have been critically analyzed to reveal that vibration effects in molding heads may reduce specific power consumption in extrusion machines, while simultaneously improving the quality of manufactured products.

The paper gives an overview of effects occurring or acoustic treatment of dissolved and molten polymers. Emphasis is made on acoustic cavitation discovered recently not only in low-viscous fluids but also in molten polymers. Major guidelines have been specified for practical utilization of acoustic treatment of flowable polymers in molding: intensification of extrusion processes, reduction in thickness of produced films, directed mechanical destruction, chemical “activation” of melts, etc. Efficiency of overlapping high-frequency vibrations in molding of molten thermoplastics is discussed in terms of power consumption.


Effective Viscosity Melt Flow Index Acoustic Cavitation Molten Polymer Vibration Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

4 References

  1. 1.
    Fridman ML, Peshkovsky SL (1979) Plasticheskiye massy 7: 29Google Scholar
  2. 2.
    Azovskaya VA, Safonova IL (1981) Himicheskaya promyshlennost za rubezhom 8(224): 45Google Scholar
  3. 3.
    Mytzyl VA, Smirnova TN (1983) Himicheskaya promyshlennost za rubezhom 1(241): 1Google Scholar
  4. 4.
    Grozdova GV, Smirnova TN (1986) Himicheskaya promysh. za rubezhom 3(279): 1Google Scholar
  5. 5.
    Fridman ML (1988) Development of equipment for mixing of molten polymers, ZINTIhimheftemash, MoscowGoogle Scholar
  6. 6.
    Vinogradov GV et al. (1970) Inzhenerno-physichesky zhurnal 19: 377Google Scholar
  7. 7.
    Prokunin AN, Fridman ML, Vinogradov GV (1971), Mehanika polymerov 3: 497Google Scholar
  8. 8.
    Malkin A. Ya, Isayev AI, Vinogradov GV (1975) Mehanika polymerov 2: 306Google Scholar
  9. 9.
    Vinogradov GV, Fridman ML, Malkin AYa, Yarlikov BV (1970) Rheol. Acta 9: 323Google Scholar
  10. 10.
    Basov NI, Lubartovitch VA (1979) Vibromolding of polymers, Himiya, LeningradGoogle Scholar
  11. 11.
    Myasnikov VP (1961) Zhurnal prikladnoy mehaniki i tehnicheskoy fisiky 5: 76Google Scholar
  12. 12.
    Gutkin AM (1961) Colloidny zhurnal 23: 20Google Scholar
  13. 13.
    Buchman YuA et al (1984) Thermal mass transfer 5(2): 17Google Scholar
  14. 14.
    Buchman YuA et al (1985) Inzh.-phys. zhurnal 49: 221Google Scholar
  15. 15.
    Schulman ZP, Zadvornyh VN, Litvinov AI (1987) Rheodynamics of nonlinearly viscoplastic fluids in circular channels with movable walls. Acad. of Sc. Bel. SSR, Minsk, Preprint 45: 51cGoogle Scholar
  16. 16.
    Schulman ZP (1975) Convective heat & mass transfer in rheologically complex fluids, Energiya, MoscowGoogle Scholar
  17. 17.
    Colleman BD, Noll WI (1959) J. Appl. Phys. 30: 1508Google Scholar
  18. 18.
    Fredrickson AG (1960) Chem. Engng. Sci. 11: 252Google Scholar
  19. 19.
    Tanner RI (1960) J. Mech. Engng. Sci. 2: 21Google Scholar
  20. 20.
    Savins IG, Wallick GS (1966) AIChE J. 12: 357Google Scholar
  21. 21.
    Bortnikov VG, Kuznetzov NV, Tyabin NV (1967) Plasticheskiye massy, 8: 49Google Scholar
  22. 22.
    Tyabin NV, Bortnikov VG, Vachagin KD (1968) Plasticheskiye massy 3: 351Google Scholar
  23. 23.
    Fridman ML (1970) Rheological properties and high-speed extrusion of polypropylene. Summary of the thesis, INHS, Ac. Sci. USSR, MoscowGoogle Scholar
  24. 24.
    Prokunin AN, Fridman ML, Vinogradov GV (1971) Mehanika polymerov 3: 497Google Scholar
  25. 25.
    Winter HH (1973) Rheol. Acta 12: 1Google Scholar
  26. 26.
    Winter HH (1975) Rheol. Acta, 14: 764Google Scholar
  27. 27.
    Colleman BD, Markwitz H, Noll WI (1966) Viscometri flow of non-Newtonian fluids. Springer Tracts of Nat. Philos, Berlin Heidelberg New YorkGoogle Scholar
  28. 28.
    Fridman ML, Peshkovsky SL, Vinogradov GV (1981) Polym. Engng. Sci. 21: 755Google Scholar
  29. 29.
    Fridman ML (1980) Regulation of rheological properties of thermoplastics and compositions based thereon in order to intensify molding processes. Summary of the thesis, In. Chem. Phys. Ac. Sci. USSR, MoscowGoogle Scholar
  30. 30.
    Fridman ML (1977) Technology of processing of crystall. polyolefins, Himiya, MoscowGoogle Scholar
  31. 31.
    Fridman ML, Isayev AI, Smyslova ES (1973) Study of extrusion flow under conditions of molding tool vibration. Proceedings of 18th All-Union Conf. on HMC, Kazan, p. 226Google Scholar
  32. 32.
    Litvinov VG (1982) Flow of non-linearly viscous fluid, Nauka, MoscowGoogle Scholar
  33. 33.
    Vinogradov GV, Malkin AYa (1980) Rheol. of Polymers, Mir, MoscowGoogle Scholar
  34. 34.
    Prokunin AN (1985) Some effects in flow of viscoelastic fluids. Summary of the thesis, IVS Ac. Aci. USSR, LeningradGoogle Scholar
  35. 35.
    Chang Dee Han (1975) Rheol. in polym. processing, Academic, New York Translation into Russian edited by Vinogradov GV and Fridman ML (1979), Himiya, MoscowGoogle Scholar
  36. 36.
    Genender MM (1985) Extrusion of PVC-compositions through heads with rotating core, Summary of the thesis, Mendeleyev Inst. Chem. Technol., MoscowGoogle Scholar
  37. 37.
    Tadmar Z, Gogos CG (1979) Principles of pölym. processing, Wiley, New York Translation into Russian edited by R. V. Torner (1984), Himiya, MoscowGoogle Scholar
  38. 38.
    Volov BM (1986) Study and optimization of design and technology for manufacturing of pressure hoses of PVC-compositions. Summary of the thesis, Lomonosov Inst. Fine Chem. Tech., MoscowGoogle Scholar
  39. 39.
    Panov AK, Vachagin KD, Fridman ML (1975) Effect of periodic mechan. strains upon flow of molten polymers in prismatic channels, In: Rheology of polymer and dispersed systems and rheophysics Minsk, vol 1, p 123Google Scholar
  40. 40.
    Ziprin MG (1977) Mehanika Polymerov, 1: 127, 2: 294, 6: 1093Google Scholar
  41. 41.
    Feitelson LA, Yakobsons EE (1977) Mehanika Polymerov 6: 1075Google Scholar
  42. 42.
    Feitelson LA (1985) Vibrothixotropy in polymers. Summary of the thesis, IMKM, Ac. Sci. Latv. SSR, RigaGoogle Scholar
  43. 43.
    Fridman ML, Konyshev YuV, Ivankov DV (1971) Injection unit of molding machine. Auth. Certif. USSR No. 291803, Bull. No. 4 Google Scholar
  44. 44.
    Fridman ML, Prut EV (1984) Uspehy Himiyi, Ac. Sci. USSR 53(2): 309Google Scholar
  45. 45.
    Lipatov YuS (1984) Colloid chemistry of polymers, Naukova Dumka, KievGoogle Scholar
  46. 46.
    Chang Deen Han (1981), Multiphase flow in polym. processing, Academic, New YorkGoogle Scholar
  47. 47.
    Kissin Yu. V, Fridman ML (1977) Mehanika Polymerov 1: 143Google Scholar
  48. 48.
    Leonov AI, Prokunin AN (1983) Rheol. Acta 22: 137Google Scholar
  49. 49.
    Leonov AI (1984) Rheol. Acta 23: 591Google Scholar
  50. 50.
    Kissin YuV, Fridman ML (1975) Zhurn. Priklad. Spectroscopy 24: 929Google Scholar
  51. 51.
    Casulli G, Klermont GR, Von Zigler A, Mena B (1987), 3d Annu. Meet. Polym. Process. Soc. Program and Abstract, April 7–10Google Scholar
  52. 52.
    Ragotner MM, Gorodkin RG, Bukovitch IV, Smolsky MB (1983) In: Prikladnaya Mehanika i Rheophysica, Ac. Sci. Bel. SSR, Minsk, p 75Google Scholar
  53. 53.
    Buchman YuA, Sysoyev VI, Prokunin AN (1987) Auth. Certif. USSR No. 1295117, Bull. No. 9Google Scholar
  54. 54.
    Sysoyev VI (1988) Study of shaft sealing by viscoelastic fluids. Summary of the thesis. IMSS, Ural Scient. Centre, Ac. Sci. USSR, PermGoogle Scholar
  55. 55.
    Flinn G (1967) Physics of acoustic caviation in fluids. In: Meson U (ed) Physical acoustics. Mir, Moscow, p 7Google Scholar
  56. 56.
    Akulichev VA (1968) Pulsation of cavities In: Roseberg LD (ed) Powerful ultrasonic fields, Nauka, Moscow, p 131Google Scholar
  57. 57.
    Fukusima K, Sanssen D, Kikuchi E (1972) Sound field characteristics related to operation of ultrasonic converters. In: Kikuchi E (ed) Ultrasonic converters. Mir, Moscow, p 353Google Scholar
  58. 58.
    Rosenberg LD (1968) Cavitation area In: Rosenberg LD (ed) Powerful ultrasonic fields. Nauka, Moscow, p 131Google Scholar
  59. 59.
    Kogarko BS (1964) Doklady AN SSSR 155: 779Google Scholar
  60. 60.
    Boguslavsky YuYa (1967) Akustichesky Zhurnal 13: 538Google Scholar
  61. 61.
    Peshkovsky SL, Yakovlev AD (1976) Akustichesky Zhurn. 22: 422Google Scholar
  62. 62.
    Peshkovsky SL (1986) Cavitation of fluid in acoustic wave In: Physical and chemical effects upon manufacturing processes, Metallurgiya, Moscow, p 93Google Scholar
  63. 63.
    Herrman V (1976) Determining equations of compacting porous materials. In: Shapiro GS (ed) Problems of the Theory of Plasticity. Mir, Moscow, p 178Google Scholar
  64. 64.
    Zeldovitch YaB, Reiser YuP (1966) Physics of shock waves and high-temperature hydrodynamic phenomena, Nauka, MoscowGoogle Scholar
  65. 65.
    Baramboym, NK (1978) Mechanochemistry of high-molecular compounds, Himiya, MoscowGoogle Scholar
  66. 66.
    Kazale A, Porter RS (1983) Polymer reactions under effects of stresses. Translation from English, Himiya, LeningradGoogle Scholar
  67. 67.
    Elpiner IE (1963) Ultrasound. Physico-chemical and biological effects. Physmatgiz, MoscowGoogle Scholar
  68. 68.
    Simionesku K, Oprea K (1970) Mechanochemistry of high-molecular compounds, Mir, MoscowGoogle Scholar
  69. 69.
    Bernhardt E (1954) Ind. & Engin. Chem. 3: 742Google Scholar
  70. 70.
    Ferry J (1963) Viscoelastic properties of polymers, Izdatinlit, MoscowGoogle Scholar
  71. 71.
    Vinogradov GV, Yanovsky YuG, Isayev AI (1970) Effect of vibrations upon polymers. In: Vinogradov GV (ed) Progress of polymer rheology. Himiya, Moscow, p 79Google Scholar
  72. 72.
    Ziprin MG, Feitelson LA (1972) Mehanika Polymerov, 4: 689Google Scholar
  73. 73.
    Feitelson LA, Yakobson EE (1977) Mehanika Polymerov 6: 1125Google Scholar
  74. 74.
    Peshkovsky SL, Generalov MB, Kaufman IN (1971) Mehanika Polymerov 6: 1097Google Scholar
  75. 74.a
    Peshkovsky SL (1971) Ultrasonic intensification of polymer material extrusion processes. Summary of the thesis, Inst. Chem. Mach. Build., MoscowGoogle Scholar
  76. 75.
    Karelin YuM, Mazurenko YuS, Peshkovsky SL (1973) Device for ultrasonic effect upon flow of molten polymers. In: Polymer equipment and processing of plastic masses, Tehnika, Kiev, p 31Google Scholar
  77. 76.
    Fridman ML, Gul VE (1975) Plasticheskiye Massy, 9: 27Google Scholar
  78. 77.
    Fridman ML, Peshkovsky SL, Vinogradov GV (1981) Polymer Eng. & Sci. 21: 755Google Scholar
  79. 78.
    Popov AV, Ischenko VG, Buryachenko AG (1970) Proizvodstvo Shin, Resinotehnicheskyh i Asbestotehnicheskyh Izdeliy, 6: 16Google Scholar
  80. 79.
    Askatelov AI (1972) Kauchuk i Resina, 3: 17Google Scholar
  81. 80.
    Popov AV (1968) Kauchuk i Resina 10: 49Google Scholar
  82. 81.
    Buryachenko AG (1969) Kauchuk i Resina 12: 18Google Scholar
  83. 82.
    Fridman ML, Peshkovsky SL, Popov VL (1978) Colloidny Zhurnal 4: 819Google Scholar
  84. 83.
    Ivanov AV, Bylalov YaM, Ismaylov TM (1975) Zavodskaya Laboratoriya, 6: 717Google Scholar
  85. 84.
    Abbas KB, Porter RS (1976) J. Appl. Polymer Sci. 20: 1289Google Scholar
  86. 85.
    Goetze KP, Porter RS (1971) J. Polymer Sci. 35: 189Google Scholar
  87. 86.
    Regel VR, Sluzker AI, Tomashevsky EE (1974) Kinetic nature of the strength of solid bodies, Nauka, MoscowGoogle Scholar
  88. 87.
    Engel T (1967) Mod. Plast. 1: 175; 1: 257Google Scholar
  89. 88.
    Zharov AA (1984) Uspehy Himyiy, Ac. Sci. USSR. 53: 236Google Scholar
  90. 89.
    Enikolopian NS (1984) Macromol. Chem. 8: 109Google Scholar
  91. 90.
    Larsen HA (1975) J. Phys. Chem. 61: 1643Google Scholar
  92. 91.
    Knapp R, Dailey J, Hammit F (1974) Cavitation, Mir, MoscowGoogle Scholar
  93. 92.
    Csang WJ, Csen HCh (1965) Phys. Fluids, 8: 758Google Scholar
  94. 93.
    Fogéer HS, Goddard (1970) Phys. Fluids, 3: 1135Google Scholar
  95. 94.
    Tanasawa J, Csang WJ (1970) J. Appl. Phys. 41: 4526Google Scholar
  96. 95.
    Avanesov AM, Avetysyan IA (1973) Izvestiya AN SSSR, Mehanika Zhidkosty i Gaza, 4: 170Google Scholar
  97. 96.
    Levitzky SP, Listrov AG (1974) PMTF, 1: 137Google Scholar
  98. 97.
    Avanesov AM, Avetysyan IA, Listrov AG (1976) Akustichesky Zhurnal 22: 812Google Scholar
  99. 98.
    Vinogradov GV, Elkin AJ, Sosin SE (1978) Polymer 19: 1458Google Scholar
  100. 99.
    Kornfeld MI (1951) Elasticity and strength of fluids, MoscowGoogle Scholar
  101. 100.
    Peshkovsky SL, Fridman ML, Brizitzky VI, Vinogradov GV, Tukachinsky AI (1981) Doklady AN SSSR, 258: 705Google Scholar
  102. 101.
    Zarembo LK, Krasilnikov VA (1966) Introduction to non-linear acoustics, Nauka, MoscowGoogle Scholar
  103. 102.
    Peshkovsky SL, Fridman ML, Tukachinsky AJ, Vinogradov GV, Eniklopian NS (1983) Polymer Composites 4: 126.Google Scholar
  104. 103.
    Fridman ML, Peshkovsky SL, Vinogradov GV (1980) In: Rheology 8-th Intern. Congr. Rheology Napoli vol 2 p 485Google Scholar
  105. 104.
    Fridman ML, Chalyh AE, Peshkovsky SL, Tukachinsky AI, Enikolopian NS (1983) Doklady AN SSSR, 273: 1169Google Scholar
  106. 105.
    Bylalov Ya M, Ismaylov TM, Ivanov AV, Lopchin VV (1976) Kauchuk i Resina 5: 33Google Scholar
  107. 106.
    Margulis MA (1984) Fundamentals of acoustic chemistry, Vyschaya Shkola, MoscowGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • M. L. Fridman
    • 1
  • S. L. Peshkovsky
    • 1
  1. 1.USSR Research Institute of Plastic MaterialsMoscowUSSR

Personalised recommendations