Advertisement

Extension of molten polymers

  • M. L. Fridman
  • V. D. Sevruk
Conference paper
Part of the Advances in Polymer Science book series (POLYMER, volume 93)

Abstract

This contribution reviews the major results of studies of the extension of molten polymers which have been carried out recently. The authors discuss systematically basic regularities of the extension of molten polydisperse polymers including the uniform extension and its development in time (at a constant strain velocity and at constant extrusion force). The article also considers the dependency of stress and strain velocity upon elastic strain, stress and strain relaxation processes; the major differences in the variations of effective viscosity under extension are pointed out. The authors describe the effect of polymer fluid flow retardation under high elastic strains.

The article reviews the latest achievements in the sphere of theoretical descriptions of the molten polydisperse polymers and gives various molecular-kinetic models of extension.

Also described are some important technological applications in the processing of polymers, including the methods of examination and verification of the properties of raw materials by means of tests in which molten polymers are extended at a constant force, and molding of sleeve-type and flat films.

The analysis has corroborated that the extension experiments were highly informative and important for science and technology.

Keywords

Elastic Strain Effective Viscosity Melt Flow Index Molten Polymer Irreversible Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5 References

  1. 1.
    Cassale A, Porter RS (1979) Polymer stress reactions. Academic Press, New York, San Francisco, London; (1983) Chimia, MoscowGoogle Scholar
  2. 2.
    Fridman ML (1987) Study and assessment of technological properties of polymers. In: Wolfson SA (1987) Fundamentals of the development of polymer production technologies. Chimia, Moscow, pp 185–231Google Scholar
  3. 3.
    Vinogradov GV, Malkin AYa (1980) Rheology of polymers. Mir Publishers, MoscowGoogle Scholar
  4. 4.
    Malkin AYa (1985) Rheology in polymer technology. Znanie, MoscowGoogle Scholar
  5. 5.
    Vinogradov GV, Malkin AYa, Volosevitch VV (1975) J. Appl. Polym Sci 22: 47Google Scholar
  6. 6.
    Everige AE Jr, Ballman RL (1976) J Appl Polym Sci, 23: 1137Google Scholar
  7. 7.
    Fridman ML (1977) Crystalline polyolefins processing technology. Chimia, MoscowGoogle Scholar
  8. 8.
    Fedorovskaya TS (1988) Himicheskaya Promyshl. za Rubezhom 1: 32Google Scholar
  9. 9.
    Petrie CIS (1979) Elongational flows. Pitman, London, San Francisco, MelbourneGoogle Scholar
  10. 10.
    Takahashi M, Masuda T, Onogi S (1983) J Soc Rheol Japan 11: 13Google Scholar
  11. 11.
    Kargin VA, Sogolova TI (1949) Zhurn Phys. Chimiy 23: 540Google Scholar
  12. 12.
    Kargin VA, Sogolova TI (1949) Zhurn Phys Chimiy 23: 550Google Scholar
  13. 13.
    Leonov AI, Prokunin AN, Vinogradov GV (1970) In: Vinogradov GV (ed) Achievements of polymer rheology, Chimia, Moscow, pp 41–51Google Scholar
  14. 14.
    Vinogradov GV, Leonov AT, Prokunin AN (1969) Rheol Acta 8: 482Google Scholar
  15. 15.
    Nitshman H, Schrade J (1948) Helv Chim Acta 31: 297Google Scholar
  16. 16.
    Ballman RL (1965) Rheol Acta 4: 137Google Scholar
  17. 17.
    Meissner J (1969) Rheol Acta 8: 78Google Scholar
  18. 18.
    Messner J (1971) Rheol Acta 1: 230Google Scholar
  19. 19.
    Radushkevitch BV, Fichman VD, Vinogradov GV (1970) In: Vinogradov GV (ed.) Achievements of polymer rheology. Chimia, Moscow, pp 24–39Google Scholar
  20. 20.
    Fichman VD, Radushkevitch BV, Vinogradov GV (1970) In: Vinogradov GV (ed) Achievements of polymer rheology. Chimia, Moscow, pp 9–24Google Scholar
  21. 21.
    Munstedt H, Laun HM (1979) Rheol Acta 18: 492Google Scholar
  22. 22.
    Cogswell FN (1969) Rheol Acta 8: 187Google Scholar
  23. 23.
    Prokunin AN (1978) Nonlinear elastic effects in extension of polymer fluids. Experiment and Theory. Preprint. Inst. Appl Mech Acad Sci USSR, Moscow, No 104Google Scholar
  24. 24.
    Prokunin AN, Filippova NP (1979) Inzhenerno-Physichesky Zhurnal 37: 724Google Scholar
  25. 25.
    Prokunin AN, Sevruk VD (1981) Inzhenerno-Physichesky Zhurnal 41: 74Google Scholar
  26. 26.
    Prokunin AN, Proskurnina NG (1979) Inzhenerno-Physichesky Zhurnal 36: 42Google Scholar
  27. 27.
    Fichman VD, Radushkevitch BV, Goldina EG, Vinogradov GV (1974) Mehanika Polymerov 1: 137Google Scholar
  28. 28.
    Cogswell FN (1972) Trans Soc Rheol 16: 383Google Scholar
  29. 29.
    Laun HM, Munstedt H (1976) Rheol Acta 15: 517Google Scholar
  30. 30.
    Laun HM, Munstedt H (1978) Rheol Acta 17: 415Google Scholar
  31. 31.
    Stevenson YE (1972) AIChE Journ 18: 540Google Scholar
  32. 32.
    Ishikura O, Koyamo K (1977) Polymer 21: 164Google Scholar
  33. 33.
    Matsumoto T, Bogue DC (1977) Trans Soc Rheol 21: 453Google Scholar
  34. 34.
    Akutin MS, Prokunin AN, Proskurnina NG, Sabsay OYu (1977) Mehanika Polymerov 2: 353Google Scholar
  35. 35.
    Prokunin AN, Proskurnina NG (1979) Inzhenerno-Physichesky Zhurnal 36: 504Google Scholar
  36. 36.
    Sabsay OYu, Koltunov MA, Vinogradov GV (1972) Mehanika Polymerov 4: 750Google Scholar
  37. 37.
    Sevruk VD, Prokunin AN (1980) Manifestations of flow retardation effect in extension of molten polyethylene at constant force. 2nd All-Union Symposium: Theory of mechanical processing of polymer materials. Perm, pp 165–166Google Scholar
  38. 38.
    Slonimsky GA, Musaelyan IN (1964) Vyskomolecularniye Soedineniya 6: 101Google Scholar
  39. 39.
    Leonov AI, Prokunin AN (1983) Rheol Acta 22: 137Google Scholar
  40. 40.
    Prokunin AN (1980) J Polym Mater 8: 303Google Scholar
  41. 41.
    Prokunin AN, Sevruk VD (1982) Inzhenerno-Physichesky Zhurnal 42: 987Google Scholar
  42. 42.
    Upadhyay RK, Isayev AI (1984) J of Rheol 28: 581Google Scholar
  43. 43.
    Upadhyay RK, Isayev AI, Shen SF (1963) J of Rheol 27: 155Google Scholar
  44. 44.
    Upadhyay RK, Isayev AI, Shen SF (1981) Rheol Acta 20: 443Google Scholar
  45. 45.
    Leonov AI, Lipkina EH, Pashkin ED, Prokunin AN (1976) Rheol Acta 15: 411Google Scholar
  46. 46.
    Prokunin AN (1988) Xth International congress on rheology Sydney, Australia, AugustGoogle Scholar
  47. 47.
    Prokunin AN (1988) Inzhenerno-Physichesky Zhurnal 54: 221; (1988) Rheol ActaGoogle Scholar
  48. 48.
    Leonov AI (1976) Rheol Acta 15: 85; Leonov AI, Prokunin AN (1980) 19: 393Google Scholar
  49. 49.
    Green MS, Tobolsky AV (1946) J Chem Phys 14: 80Google Scholar
  50. 50.
    Lodge AS (1956) Trans Faraday Soc. 52: 120Google Scholar
  51. 51.
    Yamamoto M (1956) J Phys Soc Japan 11: 413Google Scholar
  52. 52.
    Doi M, Edvards SF (1979) J Chem Soc Faraday Trans 75: 38Google Scholar
  53. 53.
    Lodge AS (1964) Elastic liquids. Academic Press, New York, LondonGoogle Scholar
  54. 54.
    Volkov VS, Vinogradov GV (1984) Rheol Acta 23: 231Google Scholar
  55. 55.
    Curtis CF, Bird BB (1981) J Chem Phys 74: 2016Google Scholar
  56. 56.
    Volkov VS, Vinogradov GV (1985) J Non-Newtonian Fluid Mech 18: 163Google Scholar
  57. 57.
    Volkov VS, Vinogradov GV (1987) 25: 261Google Scholar
  58. 58.
    Volkov VS, Vinogradov GV (1988) Progress and trends in rheology II. In: Giesekus H, Hibberd MF (ed) Steinkopff Verlag, DarmstadtGoogle Scholar
  59. 59.
    Long JH, Muller R, Frolich D (1986) Polymer 27: 6Google Scholar
  60. 60.
    Volkov VS (1984) Intern. Rubber Conference, Moscow, Preprint A67Google Scholar
  61. 61.
    Wang RH (1963) Model and Simul, vol 14. Proc. 14th Annu. Pittsburg Conf 21–22Google Scholar
  62. 62.
    Kalinchev EL, Sakovtzeva MB (1983) Properties and processing of thermoplastics, Chimia, LeningradGoogle Scholar
  63. 63.
    Fridman ML, Malkin AYa (1976) Plasticheskiye Massy 8: 23Google Scholar
  64. 64.
    Driscoll SB (1980) Rubber World 3: 31Google Scholar
  65. 65.
    Sipdzi X (1983) Japan Patent 58-119 844Google Scholar
  66. 66.
    Ulyanov LP, Sabsay OYu, Friedman ML et al (1988) Author's Certificate No. 1377 662 (USSR)Google Scholar
  67. 67.
    Winter HH (1983) Pure and Appl Chem 55: 943Google Scholar
  68. 68.
    Sevruk VD (1984) Extension of molten thermoplastics at outlet from molding tool. Thesis. Inst Fine Chem Tech, MoscowGoogle Scholar
  69. 69.
    Sevruk VD, Prokunin AN, Fridman ML (1984) Regularities of molten polymer extension and their manifestation in plastic processing. NIITEHIM, MoscowGoogle Scholar
  70. 70.
    Prokunin AN, Sevruk VD (1980) Inzhenerno-Physichesky Zhurnal 39: 343Google Scholar
  71. 71.
    Sevruk VD, Prokunin AN, Fridman ML (1980) Regularites in extension of molten thermoplastics. In: Fridman ML (ed) Rheology in polymer processing. NPO Plastic, Moscow, pp 84–99Google Scholar
  72. 72.
    Sevruk VD, Prokunin AN, Fridman ML, Novikov DD (1984) Plasticheskiye Massy 7: 61Google Scholar
  73. 73.
    Sevruk VD, Blinova NK, Kalashnikova OD (1988) Plasticheskiye Massy 2: 22Google Scholar
  74. 74.
    Slonimsky GL, Askadsky AA (1967) Mehanika Polymerov 4: 659Google Scholar
  75. 75.
    Chalaya NM, Sabsay OYu, Vinogradov GV et al. (1982) Specific rheological and technological properties of modified polystyrene. In: Fridman ML (ed) Processing of filled compound materials. NPO Plastic, Moscow, pp 80–90Google Scholar
  76. 76.
    Raible T, Stephenson SE, Meissner J, Wagner MN (1982) J Non-Newtonian Fluid Mechan 11: 239Google Scholar
  77. 77.
    Lodge AS (1968) Rheol Acta 7: 379Google Scholar
  78. 78.
    Lodge AS (1974) Body tensor fields in continuum Mechanics. Academic Press, London, New YorkGoogle Scholar
  79. 79.
    Wagner MH (1976) Rheol Acta 15: 136Google Scholar
  80. 80.
    Wagner MH (1979) Rheol Acta 18: 83Google Scholar
  81. 81.
    Wagner MH, Raible T, Meissner J (1979) Rheol Acta 18: 427Google Scholar
  82. 82.
    Wagner MH, Meissner J (1980) Macromol Chem 181: 1533Google Scholar
  83. 83.
    Grossley WW, Glasscock SD, Crawley RL (1970) Trans Soc Rheol. 14: 519Google Scholar
  84. 84.
    Malkin AYa, Goncharenko VV, Malinovsky VV (1976) Mehanika Polymerov 3: 487Google Scholar
  85. 85.
    Denn MM, Petrie CJS, Avenas P (1975) AIChE Journal 21: 791Google Scholar
  86. 86.
    Leonov AI, Prokunin AN (1984) Rheol Acta 23: 62Google Scholar
  87. 87.
    Han CD, Park YY (1975) J Appl Polym Sci 19: 3257Google Scholar
  88. 88.
    Stevenson JP, Chung SCK (1974) Paper presented at Ann Meeting Soc Rheol 45th Amherst, Mass, pp 21–24Google Scholar
  89. 89.
    Han CD (1976) Rheology in polymer processing. Academic Press, New York, San Francisco, London; (1979) Vinogradov GV, Fridman ML (eds) Chimia, MoscowGoogle Scholar
  90. 90.
    Winter HH, Fischer E (1981) Polymer Engng and Sci 21: 366Google Scholar
  91. 91.
    Michaeli W, Menges G (1978) 37th Ann Techn Conf Soc Plast Engng New Orleans, La, pp 141–145Google Scholar
  92. 92.
    Lohse G, Marinow S (1986) Plaste und Kautschuk 33: 106Google Scholar
  93. 93.
    Speranskaya TA, Goldin PO, Kreizer TV et al. (1982) In: Modelling and equipment of plastic manufacturing processes. Leningrad, pp 18–27Google Scholar
  94. 94.
    Menges G, Winkel E, Nordmeier J (184) Papier und Kunststoff-Verarb 19: 44Google Scholar
  95. 95.
    Minoshima W, White J (1983) Polym Engng Rev 2: 212Google Scholar
  96. 96.
    Malik K, Lev V, Matousek Z (1981) Instrum and Automat: Paper Rubber Plast and Polym Ind Proc 4th IFAC Conf. Chent 3–5, June 1980. Oxford pp 103–108, 458–460Google Scholar
  97. 97.
    Breier J, Kathe H, Marx D, Dorsch HT (1981) Plaste und Kautschuk 28: 217Google Scholar
  98. 98.
    Grigoriasi V, Petrovan S (1985) Mater Plast 22: 193Google Scholar
  99. 99.
    Meissner J, Stephenson SE, Demarmels A, Portman P (1982) J Non-Newtonian Fluid Mechanics 7: 10Google Scholar
  100. 100.
    Mzelsky AI (1980) Rheological analysis of the process of film canvas molding from molten polymer. In: Fridman ML (ed) Rheology in polymer processing. NPO Plastic, Moscow, pp 71–84Google Scholar
  101. 101.
    Dubinsky MB, Sabsay O Yu, Fridman ML, Mzelsky AI (1986) Plasticheckiye Massy 3: 20Google Scholar
  102. 102.
    Fridman ML, Mikhailov SN, Muhametgaleyev AM (1988) Mathematical modelling of single-screw extruders. ZINTIHimneftemasch, MoscowGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • M. L. Fridman
    • 1
  • V. D. Sevruk
    • 1
  1. 1.USSR Research Institute of Plastic MaterialsMoskowUSSR

Personalised recommendations