Skip to main content

Extension of molten polymers

  • Conference paper
  • First Online:
Polymer Processing

Part of the book series: Advances in Polymer Science ((POLYMER,volume 93))

Abstract

This contribution reviews the major results of studies of the extension of molten polymers which have been carried out recently. The authors discuss systematically basic regularities of the extension of molten polydisperse polymers including the uniform extension and its development in time (at a constant strain velocity and at constant extrusion force). The article also considers the dependency of stress and strain velocity upon elastic strain, stress and strain relaxation processes; the major differences in the variations of effective viscosity under extension are pointed out. The authors describe the effect of polymer fluid flow retardation under high elastic strains.

The article reviews the latest achievements in the sphere of theoretical descriptions of the molten polydisperse polymers and gives various molecular-kinetic models of extension.

Also described are some important technological applications in the processing of polymers, including the methods of examination and verification of the properties of raw materials by means of tests in which molten polymers are extended at a constant force, and molding of sleeve-type and flat films.

The analysis has corroborated that the extension experiments were highly informative and important for science and technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5 References

  1. Cassale A, Porter RS (1979) Polymer stress reactions. Academic Press, New York, San Francisco, London; (1983) Chimia, Moscow

    Google Scholar 

  2. Fridman ML (1987) Study and assessment of technological properties of polymers. In: Wolfson SA (1987) Fundamentals of the development of polymer production technologies. Chimia, Moscow, pp 185–231

    Google Scholar 

  3. Vinogradov GV, Malkin AYa (1980) Rheology of polymers. Mir Publishers, Moscow

    Google Scholar 

  4. Malkin AYa (1985) Rheology in polymer technology. Znanie, Moscow

    Google Scholar 

  5. Vinogradov GV, Malkin AYa, Volosevitch VV (1975) J. Appl. Polym Sci 22: 47

    Google Scholar 

  6. Everige AE Jr, Ballman RL (1976) J Appl Polym Sci, 23: 1137

    Google Scholar 

  7. Fridman ML (1977) Crystalline polyolefins processing technology. Chimia, Moscow

    Google Scholar 

  8. Fedorovskaya TS (1988) Himicheskaya Promyshl. za Rubezhom 1: 32

    Google Scholar 

  9. Petrie CIS (1979) Elongational flows. Pitman, London, San Francisco, Melbourne

    Google Scholar 

  10. Takahashi M, Masuda T, Onogi S (1983) J Soc Rheol Japan 11: 13

    Google Scholar 

  11. Kargin VA, Sogolova TI (1949) Zhurn Phys. Chimiy 23: 540

    Google Scholar 

  12. Kargin VA, Sogolova TI (1949) Zhurn Phys Chimiy 23: 550

    Google Scholar 

  13. Leonov AI, Prokunin AN, Vinogradov GV (1970) In: Vinogradov GV (ed) Achievements of polymer rheology, Chimia, Moscow, pp 41–51

    Google Scholar 

  14. Vinogradov GV, Leonov AT, Prokunin AN (1969) Rheol Acta 8: 482

    Google Scholar 

  15. Nitshman H, Schrade J (1948) Helv Chim Acta 31: 297

    Google Scholar 

  16. Ballman RL (1965) Rheol Acta 4: 137

    Google Scholar 

  17. Meissner J (1969) Rheol Acta 8: 78

    Google Scholar 

  18. Messner J (1971) Rheol Acta 1: 230

    Google Scholar 

  19. Radushkevitch BV, Fichman VD, Vinogradov GV (1970) In: Vinogradov GV (ed.) Achievements of polymer rheology. Chimia, Moscow, pp 24–39

    Google Scholar 

  20. Fichman VD, Radushkevitch BV, Vinogradov GV (1970) In: Vinogradov GV (ed) Achievements of polymer rheology. Chimia, Moscow, pp 9–24

    Google Scholar 

  21. Munstedt H, Laun HM (1979) Rheol Acta 18: 492

    Google Scholar 

  22. Cogswell FN (1969) Rheol Acta 8: 187

    Google Scholar 

  23. Prokunin AN (1978) Nonlinear elastic effects in extension of polymer fluids. Experiment and Theory. Preprint. Inst. Appl Mech Acad Sci USSR, Moscow, No 104

    Google Scholar 

  24. Prokunin AN, Filippova NP (1979) Inzhenerno-Physichesky Zhurnal 37: 724

    Google Scholar 

  25. Prokunin AN, Sevruk VD (1981) Inzhenerno-Physichesky Zhurnal 41: 74

    Google Scholar 

  26. Prokunin AN, Proskurnina NG (1979) Inzhenerno-Physichesky Zhurnal 36: 42

    Google Scholar 

  27. Fichman VD, Radushkevitch BV, Goldina EG, Vinogradov GV (1974) Mehanika Polymerov 1: 137

    Google Scholar 

  28. Cogswell FN (1972) Trans Soc Rheol 16: 383

    Google Scholar 

  29. Laun HM, Munstedt H (1976) Rheol Acta 15: 517

    Google Scholar 

  30. Laun HM, Munstedt H (1978) Rheol Acta 17: 415

    Google Scholar 

  31. Stevenson YE (1972) AIChE Journ 18: 540

    Google Scholar 

  32. Ishikura O, Koyamo K (1977) Polymer 21: 164

    Google Scholar 

  33. Matsumoto T, Bogue DC (1977) Trans Soc Rheol 21: 453

    Google Scholar 

  34. Akutin MS, Prokunin AN, Proskurnina NG, Sabsay OYu (1977) Mehanika Polymerov 2: 353

    Google Scholar 

  35. Prokunin AN, Proskurnina NG (1979) Inzhenerno-Physichesky Zhurnal 36: 504

    Google Scholar 

  36. Sabsay OYu, Koltunov MA, Vinogradov GV (1972) Mehanika Polymerov 4: 750

    Google Scholar 

  37. Sevruk VD, Prokunin AN (1980) Manifestations of flow retardation effect in extension of molten polyethylene at constant force. 2nd All-Union Symposium: Theory of mechanical processing of polymer materials. Perm, pp 165–166

    Google Scholar 

  38. Slonimsky GA, Musaelyan IN (1964) Vyskomolecularniye Soedineniya 6: 101

    Google Scholar 

  39. Leonov AI, Prokunin AN (1983) Rheol Acta 22: 137

    Google Scholar 

  40. Prokunin AN (1980) J Polym Mater 8: 303

    Google Scholar 

  41. Prokunin AN, Sevruk VD (1982) Inzhenerno-Physichesky Zhurnal 42: 987

    Google Scholar 

  42. Upadhyay RK, Isayev AI (1984) J of Rheol 28: 581

    Google Scholar 

  43. Upadhyay RK, Isayev AI, Shen SF (1963) J of Rheol 27: 155

    Google Scholar 

  44. Upadhyay RK, Isayev AI, Shen SF (1981) Rheol Acta 20: 443

    Google Scholar 

  45. Leonov AI, Lipkina EH, Pashkin ED, Prokunin AN (1976) Rheol Acta 15: 411

    Google Scholar 

  46. Prokunin AN (1988) Xth International congress on rheology Sydney, Australia, August

    Google Scholar 

  47. Prokunin AN (1988) Inzhenerno-Physichesky Zhurnal 54: 221; (1988) Rheol Acta

    Google Scholar 

  48. Leonov AI (1976) Rheol Acta 15: 85; Leonov AI, Prokunin AN (1980) 19: 393

    Google Scholar 

  49. Green MS, Tobolsky AV (1946) J Chem Phys 14: 80

    Google Scholar 

  50. Lodge AS (1956) Trans Faraday Soc. 52: 120

    Google Scholar 

  51. Yamamoto M (1956) J Phys Soc Japan 11: 413

    Google Scholar 

  52. Doi M, Edvards SF (1979) J Chem Soc Faraday Trans 75: 38

    Google Scholar 

  53. Lodge AS (1964) Elastic liquids. Academic Press, New York, London

    Google Scholar 

  54. Volkov VS, Vinogradov GV (1984) Rheol Acta 23: 231

    Google Scholar 

  55. Curtis CF, Bird BB (1981) J Chem Phys 74: 2016

    Google Scholar 

  56. Volkov VS, Vinogradov GV (1985) J Non-Newtonian Fluid Mech 18: 163

    Google Scholar 

  57. Volkov VS, Vinogradov GV (1987) 25: 261

    Google Scholar 

  58. Volkov VS, Vinogradov GV (1988) Progress and trends in rheology II. In: Giesekus H, Hibberd MF (ed) Steinkopff Verlag, Darmstadt

    Google Scholar 

  59. Long JH, Muller R, Frolich D (1986) Polymer 27: 6

    Google Scholar 

  60. Volkov VS (1984) Intern. Rubber Conference, Moscow, Preprint A67

    Google Scholar 

  61. Wang RH (1963) Model and Simul, vol 14. Proc. 14th Annu. Pittsburg Conf 21–22

    Google Scholar 

  62. Kalinchev EL, Sakovtzeva MB (1983) Properties and processing of thermoplastics, Chimia, Leningrad

    Google Scholar 

  63. Fridman ML, Malkin AYa (1976) Plasticheskiye Massy 8: 23

    Google Scholar 

  64. Driscoll SB (1980) Rubber World 3: 31

    Google Scholar 

  65. Sipdzi X (1983) Japan Patent 58-119 844

    Google Scholar 

  66. Ulyanov LP, Sabsay OYu, Friedman ML et al (1988) Author's Certificate No. 1377 662 (USSR)

    Google Scholar 

  67. Winter HH (1983) Pure and Appl Chem 55: 943

    Google Scholar 

  68. Sevruk VD (1984) Extension of molten thermoplastics at outlet from molding tool. Thesis. Inst Fine Chem Tech, Moscow

    Google Scholar 

  69. Sevruk VD, Prokunin AN, Fridman ML (1984) Regularities of molten polymer extension and their manifestation in plastic processing. NIITEHIM, Moscow

    Google Scholar 

  70. Prokunin AN, Sevruk VD (1980) Inzhenerno-Physichesky Zhurnal 39: 343

    Google Scholar 

  71. Sevruk VD, Prokunin AN, Fridman ML (1980) Regularites in extension of molten thermoplastics. In: Fridman ML (ed) Rheology in polymer processing. NPO Plastic, Moscow, pp 84–99

    Google Scholar 

  72. Sevruk VD, Prokunin AN, Fridman ML, Novikov DD (1984) Plasticheskiye Massy 7: 61

    Google Scholar 

  73. Sevruk VD, Blinova NK, Kalashnikova OD (1988) Plasticheskiye Massy 2: 22

    Google Scholar 

  74. Slonimsky GL, Askadsky AA (1967) Mehanika Polymerov 4: 659

    Google Scholar 

  75. Chalaya NM, Sabsay OYu, Vinogradov GV et al. (1982) Specific rheological and technological properties of modified polystyrene. In: Fridman ML (ed) Processing of filled compound materials. NPO Plastic, Moscow, pp 80–90

    Google Scholar 

  76. Raible T, Stephenson SE, Meissner J, Wagner MN (1982) J Non-Newtonian Fluid Mechan 11: 239

    Google Scholar 

  77. Lodge AS (1968) Rheol Acta 7: 379

    Google Scholar 

  78. Lodge AS (1974) Body tensor fields in continuum Mechanics. Academic Press, London, New York

    Google Scholar 

  79. Wagner MH (1976) Rheol Acta 15: 136

    Google Scholar 

  80. Wagner MH (1979) Rheol Acta 18: 83

    Google Scholar 

  81. Wagner MH, Raible T, Meissner J (1979) Rheol Acta 18: 427

    Google Scholar 

  82. Wagner MH, Meissner J (1980) Macromol Chem 181: 1533

    Google Scholar 

  83. Grossley WW, Glasscock SD, Crawley RL (1970) Trans Soc Rheol. 14: 519

    Google Scholar 

  84. Malkin AYa, Goncharenko VV, Malinovsky VV (1976) Mehanika Polymerov 3: 487

    Google Scholar 

  85. Denn MM, Petrie CJS, Avenas P (1975) AIChE Journal 21: 791

    Google Scholar 

  86. Leonov AI, Prokunin AN (1984) Rheol Acta 23: 62

    Google Scholar 

  87. Han CD, Park YY (1975) J Appl Polym Sci 19: 3257

    Google Scholar 

  88. Stevenson JP, Chung SCK (1974) Paper presented at Ann Meeting Soc Rheol 45th Amherst, Mass, pp 21–24

    Google Scholar 

  89. Han CD (1976) Rheology in polymer processing. Academic Press, New York, San Francisco, London; (1979) Vinogradov GV, Fridman ML (eds) Chimia, Moscow

    Google Scholar 

  90. Winter HH, Fischer E (1981) Polymer Engng and Sci 21: 366

    Google Scholar 

  91. Michaeli W, Menges G (1978) 37th Ann Techn Conf Soc Plast Engng New Orleans, La, pp 141–145

    Google Scholar 

  92. Lohse G, Marinow S (1986) Plaste und Kautschuk 33: 106

    Google Scholar 

  93. Speranskaya TA, Goldin PO, Kreizer TV et al. (1982) In: Modelling and equipment of plastic manufacturing processes. Leningrad, pp 18–27

    Google Scholar 

  94. Menges G, Winkel E, Nordmeier J (184) Papier und Kunststoff-Verarb 19: 44

    Google Scholar 

  95. Minoshima W, White J (1983) Polym Engng Rev 2: 212

    Google Scholar 

  96. Malik K, Lev V, Matousek Z (1981) Instrum and Automat: Paper Rubber Plast and Polym Ind Proc 4th IFAC Conf. Chent 3–5, June 1980. Oxford pp 103–108, 458–460

    Google Scholar 

  97. Breier J, Kathe H, Marx D, Dorsch HT (1981) Plaste und Kautschuk 28: 217

    Google Scholar 

  98. Grigoriasi V, Petrovan S (1985) Mater Plast 22: 193

    Google Scholar 

  99. Meissner J, Stephenson SE, Demarmels A, Portman P (1982) J Non-Newtonian Fluid Mechanics 7: 10

    Google Scholar 

  100. Mzelsky AI (1980) Rheological analysis of the process of film canvas molding from molten polymer. In: Fridman ML (ed) Rheology in polymer processing. NPO Plastic, Moscow, pp 71–84

    Google Scholar 

  101. Dubinsky MB, Sabsay O Yu, Fridman ML, Mzelsky AI (1986) Plasticheckiye Massy 3: 20

    Google Scholar 

  102. Fridman ML, Mikhailov SN, Muhametgaleyev AM (1988) Mathematical modelling of single-screw extruders. ZINTIHimneftemasch, Moscow

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

M. L. Fridman

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag

About this paper

Cite this paper

Fridman, M.L., Sevruk, V.D. (1990). Extension of molten polymers. In: Fridman, M.L. (eds) Polymer Processing. Advances in Polymer Science, vol 93. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0025813

Download citation

  • DOI: https://doi.org/10.1007/BFb0025813

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51376-6

  • Online ISBN: 978-3-540-46202-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics