Skip to main content

The prominence-corona Interface

  • Conference paper
  • First Online:
Dynamics of Quiescent Prominences

Part of the book series: Lecture Notes in Physics ((LNP,volume 363))

Abstract

The existence of cool and dense material in the hot and diluted corona implies specific mass and energy transfers between the two media. This is true for all steps in prominence lifetime : formation, quiescence and disappearance. Much theoretical work has been done recently on the formation by coronal condensation, but observational signatures are scarce, probably because of the long duration involved. On the contrary, the “Disparition Brusque” phenomenon has been observed in different wavelengths (temperatures) and shown to be either essentially magnetic or thermal. Line ratios have been used for the density diagnostics of eruptive prominences and point to a small filling factor. As for the quiet PCTR, the increase of Differential Emission Measure at lower temperatures, extensively studied with Skylab, is still a puzzle. With the help of both u-v (HRTS) and radio (VLA) new data, temperature gradients have been derived. The DEM increase could be explained by such heating process as waves or transients and also (at low temperature) by the reduction of radiative losses in optically thick lines. UVSP,observations on SMM indicate upflows and downflows in the PCTR. Their positions with respect to the magnetic field lines are unknown simply because no magnetic measurement exists in the PCTR. There is much activity in modeling prominences as a superposition of fine structures (threads, loops,..) in thermal equilibrium and in comparing with the uv emission. Obviously, we now have some information on pressure and temperature gradient in the PCTR but we do not know the geometry, the magnetic field nor the heating process. Further decisive progress will be made with the spectrometers and coronagraphs on SOHO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Athay, R.G., 1986, Ap. J. 308, 975

    Google Scholar 

  • Athay, R.G., and Illing, R.M.E., 1986, Journal of Geophys. Res. 91, 10961.

    Google Scholar 

  • Ballester, J.L., and Priest, E.R., 1987, Solar Phys. 109, 335

    Google Scholar 

  • Ballester, J.L., and Priest, E.R., 1989, “Model for fibril structure of solar prominences”, preprint

    Google Scholar 

  • Balthasar, H., Knölker, M., Stellmacher, G. and Wiehr, E., 1986, Astron. Astrophys., 163, 343.

    Google Scholar 

  • Engvold, O., 1988, “The Prominence-Corona Transition Region” in Proceedings of the 9th Sacramento Peak Summer Symposium, ed. R.C. Altrock, 151

    Google Scholar 

  • Engvold, O., 1989, “Prominence Environment” in Dynamics and Structure of Quiescent Solar Prominences, ed. E.R. Priest, Kluwer Academic Publishers, p.47

    Google Scholar 

  • Engvold, O., Wiehr, E. and Wittmann, A., 1980, Astron. Astrophys. 85, 326

    Google Scholar 

  • Engvold, O., Tandberg-Hanssen, E., Reichman, E., 1985, Solar Phys. 96, 35

    Google Scholar 

  • Engvold, O., Kjeldseth-Moe, O., Bartoe, J.-D.F., and Brueckner, G.E., 1987, 21st Eslab Symposium, ESA SP 275, 21

    Google Scholar 

  • Fontenla, J.M. and Rovira, M., 1985, Solar Phys. 96, 53

    Google Scholar 

  • Fontenla, J.M., and Poland, A.I., 1989, Solar Phys. 123, 143

    Google Scholar 

  • Fontenla, J.M., Avrett, E.H., and Loeser, R., 1990, “Hydrostatic Thermal Models with Ambipolar Diffusion”, to be published in Astrophys. J.

    Google Scholar 

  • Gaizauskas, V., 1989, in “Physics of Magnetic Flux Ropes”, Proceedings of AGU Chapman Conference.

    Google Scholar 

  • Harrison, R.A., Rompolt, B., and Garczynska, I., 1988, Solar Phys. 116, 61

    Google Scholar 

  • Heinzel, P., Gouttebroze, P. and Vial, J.-C., I988, “Non LTE modelling of prominences”, Workshop on Dynamics and Structure of Solar Prominences, ed. E. Priest and J.L. Ballester, Mallorca

    Google Scholar 

  • Hirayama, T., 1985, Solar Phys., 100, 415

    Google Scholar 

  • Koutchmy, S., 1981, Space Sci. Rev. 29, 375

    Google Scholar 

  • Kundu, M.R., 1986, “Coronal Prominence Plasma” Workshop, NASA 2442, A. Poland Editor, p.117

    Google Scholar 

  • Kundu, M.R., Melozzi, M., and Shevgaonkar, R.K., 1986, Astron. & Astrophys. 167, 166

    Google Scholar 

  • Kundu, M.R., Schmahl, E.J., and Fu, 1988, Ap. J. 325 905

    Google Scholar 

  • Lang, K.R., and Willson, R.F., 1989, Ap. J. Letters 344, L73

    Google Scholar 

  • Lantos, P., and Raoult, A., 1980, Solar Phys. 66, 275

    Google Scholar 

  • Leroy, J.L., Ratier, G., and Bommier, V., 1977, Astron. & Astrophys. 54, 811

    Google Scholar 

  • Malherbe, J.M., and Priest, E.R., 1983, Astron. & Astrophys. 123, 80

    Google Scholar 

  • Malherbe, J.M., Schmieder, B., Mein, P., and Tandberg-Hanssen, E., 1987, Astron. Astrophys., 172, 316.

    Google Scholar 

  • Mouradian, Z., Martres, M.J., and Soru-Escaut, I., 1980, Proc. Japan-France Seminar on Solar Phys. (ed F. Moriyama and J-C Henoux), p. 195

    Google Scholar 

  • Mouradian, Z., Martres, M.J., and Soru-Escaut,I., I989

    Google Scholar 

  • Kjeldseth-Moe, O., Cook, J.W., and Mango, S.A., 1979, Solar Phys. 61, 319

    Google Scholar 

  • Noens, J.C., Schmieder, B., and Mein, P., 1988, Proceedings of the Workshop “Dynamics and structure of solar prominences”, ed. Ballester and Priest, p. 177

    Google Scholar 

  • Orrall, E.Q., and Schmahl, E.J., 1976, Solar Phys. 50, 365

    Google Scholar 

  • Orrall, E.Q., and Schmahl, E.J., 1979, Ap. J. 240, 908

    Google Scholar 

  • Schmahl, E.J. and Orrall, E.Q., I986, "Coronal Prominence Plasma" Workshop, NASA 2442, A. Poland Editor, p.127

    Google Scholar 

  • Simon, G., Schmieder, B., Demoulin, P. and Poland, A., 1986, Astron. and Astrophys. 166, 319.

    Google Scholar 

  • Orrall, E.Q., and Speer, R., 1974, in “Chromospheric Fine Structure”, ed. R.G. Athay, Reidel, 193

    Google Scholar 

  • Orrall, E.Q., and Zirker, J.B., 1961, Ap. J. 134, 72

    Google Scholar 

  • Poland, A.I, Tandberg-Hanssen, E., 1983, Solar Phys. 84, 63.

    Google Scholar 

  • Poland, A.I., and Mariska, J.T., 1986, Solar Phys. 104, 303

    Google Scholar 

  • Rabin, D., 1986, “Coronal Prominence Plasma” Workshop, NASA 2442, A. Poland Editor, p. 135

    Google Scholar 

  • Saito, K., and Tandberg-Hanssen E., 1973, Solar Phys. 31, 105

    Google Scholar 

  • Schmahl, E.J., Foukal, P.V., Huber, M.C., Noyes, R.W., Reeves, E.M., Timothy, J.G., Vernazza, J.E., and Withbroe, G.L., 1974, Solar Phys. 39, 337

    Google Scholar 

  • Schmahl, E.J., and Orrall, E.Q., 1979, Ap. J. Letters 231, L41

    Google Scholar 

  • Schmahl, E.J. and Orrall, E.Q., 1986, “Coronal Prominence Plasma” Workshop, NASA 2442, A. Poland Editor, p.127.

    Google Scholar 

  • Schmieder, B., Poland, A.I., Tompson, B., and Demoulin, P., 1988, Astron. Astrophys., 197, 281.

    Google Scholar 

  • Schmieder, B., Raadu, M.A., Demoulin, P., and Dere, K.P., 1989, to be published in Astron. Astrophys.

    Google Scholar 

  • Steele,gnC.D.C., and Priest, E.R., 1989, “Thermal equilibria of coronal magnetic loops”, preprint

    Google Scholar 

  • Stellmacher, G., Koutchmy, S. and Lebecq, C., 1986, Astron. & Astrophys. 167, 351.

    Google Scholar 

  • Toot, G.D., and Malville, J.M., 1987, Solar Phys. 112, 67

    Google Scholar 

  • Tsubaki, T., 1977, Solar Phys. 51, 121

    Google Scholar 

  • Tsubaki, T., and Takeuchi, A., 1986, Solar Phys. 104, 313.

    Google Scholar 

  • Tsubaki, T., Ohnishi, Y.O., and Suematsu, Y., 1987, Publ. Astron. Soc. Japan 39, 179.

    Google Scholar 

  • Tsubaki, T., Oyoda, M., and Suematsu, Y., 1988, Publ. Astron. Soc. Japan 40, 121.

    Google Scholar 

  • Vial, J.C., 1988, “The O VI (103.2 run) prominence profile and the prominence-corona interface”, Proceedings of the Workshop “Dynamics and structure of sclar prominences”, ed. Ballester and Priest, p.181.

    Google Scholar 

  • Vial, J.-C., Lemaire, P., Artzner, G. and Gouttebroze, P., 1980, Solar Phys. 68, 187

    Google Scholar 

  • Vrsnak, B., 1984, Solar Phys. 94, 289

    Google Scholar 

  • Widing, K.G., Feldman, U., and Bhatia, A.K., 1986, Ap. J. 308, 982.

    Google Scholar 

  • Yang, C., Nicholls, R., and Morgan, F., 1975, Solar Phys. 45, 351

    Google Scholar 

  • Zirker, J.B., 1989, “Physics of prominences” in The Solar Interior and Atmosphere, eds. A. Cox, W. Livingston and M. Matthews, University of Arizona

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

V. Ruždjak E. Tandberg-Hanssen

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag

About this paper

Cite this paper

Vial, J.C. (1990). The prominence-corona Interface. In: Ruždjak, V., Tandberg-Hanssen, E. (eds) Dynamics of Quiescent Prominences. Lecture Notes in Physics, vol 363. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0025645

Download citation

  • DOI: https://doi.org/10.1007/BFb0025645

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52973-6

  • Online ISBN: 978-3-540-46293-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics