Advertisement

Elucidation of cationic polymerization mechanisms by means of quantum chemical methods

  • Peter Hallpap
  • Martin Bölke
  • Günther Heublein
Conference paper
  • 216 Downloads
Part of the Advances in Polymer Science book series (POLYMER, volume 86)

Abstract

This article reviews results of application of quantum chemical calculations to the cationic polymerization of vinyl monomers and explains the advantages as well as the disadvantages of quantum chemical model calculations while examining complex mechanisms. After describing methods and approximations which are often used and some methodical extensions, this article demonstrates by using results of quantum chemical calculations that the theoretical models are able to interpret and to quantify effects found by the experiment. Furthermore, these calculations are able to assert in the sense of reaction theory how to control reactions and to improve understanding of cationic polymerization. Among other things, the modelling of the processes of the cationic homo- and copolymerization, the calculations on the stability of cations and complex counterions and also the estimations on the polymerizing ability of monomers are examples for this. Moreover, it was found in special cases that it is necessary to consider the solvent influence as one the most important factors affecting ionic reactions by theoretical models.

Keywords

Quantum Chemical Potential Energy Surface Lewis Acid Vinyl Ether Propagation Step 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6 References

  1. 1.
    Gandini A, Cheradame H (1980) Adv. Polym. Sci. 34/35: 1Google Scholar
  2. 2.
    Kennedy JP, Marechal E (1982) Carbocationic Polymerization, Wiley-Interscience, New YorkGoogle Scholar
  3. 3.
    Goethals EJ (ed) (1984) Cationic Polymerization and Related Processes. Academic Press, LondonGoogle Scholar
  4. 4.
    Heublein G (ed) (1986) Macromol. Chem., Macromol. Symp. 3: 1Google Scholar
  5. 5.
    Hallpap P, Heublein G (1984) Plaste Kautsch. 31: 161Google Scholar
  6. 6.
    Birner P, Hofmann H-J, Weiss C (1979) MO-theoretische Methoden in der organischen Chemie. Akademie-Verlag, BerlinGoogle Scholar
  7. 7.
    Eizner JuE, Erussalimskij BL (1976) Elektronnyj Aspekt Reakcij Polymerizacii. Nauka, LeningradGoogle Scholar
  8. 8.
    Heilbronner E, Bock H (1970) Das HMO-Modell und seine Anwendung. Verlag Chemie, WeinheimGoogle Scholar
  9. 9.
    Streitwieser jr A (1952) Molecular Orbital Theory for Organic Chemists. Wiley, New York, LondonGoogle Scholar
  10. 10.
    Hoffmann R (1963) J. Chem. Phys. 39: 1397CrossRefGoogle Scholar
  11. 11.
    Pople JA, Beveridge DL (1970) Approximate Molecular Orbital Theory. McGraw Hill, New YorkGoogle Scholar
  12. 12.
    Bingham RC, Dewar MJS, Lo DH (1975) J. Am. Chem. Soc. 97: 1285, 1294, 1302, 1307CrossRefGoogle Scholar
  13. 13.
    Hallpap P, Heublein G, Bogomolni VJa, Eizner YuYe, Erussalimskii BL, Skorochodov SS (1978) Eur. Polym. J. 14: 1027CrossRefGoogle Scholar
  14. 14.
    Hallpap P, Heublein G (1975) Z. Chem. 15: 404Google Scholar
  15. 15.
    Hallpap P, Heublein G (1975) ibid. 15: 486Google Scholar
  16. 16.
    Hallpap P, Heublein G (1976) ibid. 16: 21Google Scholar
  17. 17.
    Haouam A, Surrateanu G, Comanita E, Simionescu CI (1981) Bull. Inst. Politeh. Ioasi, Sect. 2: Chim. Ing. Chim. 27: 83; (1982) CA 97: 216769hGoogle Scholar
  18. 18.
    Hallpap P, Heublein G, Grüntzig C, Reinhold J (1984) J. Prakt. Chem. 326: 537CrossRefGoogle Scholar
  19. 19.
    Hallpap P, Heublein G, Grüntzig C, Zwanziger H, Reinhold J (1982) Acta Polym. 33: 358, 362CrossRefGoogle Scholar
  20. 20.
    Kawamura T, Uryu T, Matsuzaki K (1982) Makromol. Chem. 183: 125CrossRefGoogle Scholar
  21. 21.
    Dewar MJS, Haddon RC, Suck SH J. Chem. Soc., Chem. Commun. 1974, 611Google Scholar
  22. 22.
    Dewar MJS, Ford GP (1977) J. Am. Chem. Soc. 99: 1685CrossRefGoogle Scholar
  23. 23.
    Dannenberg JJ, Abrams C, Decoret C, Rayez JC, Metras F (1983) J. Org. Chem. 48: 3315CrossRefGoogle Scholar
  24. 24.
    Schleyer PvR, Kos AJ, Raghavachari K J. Chem. Soc., Chem. Commun. 1983, 1296Google Scholar
  25. 25.
    Dewar MJS, Olivella S, Rzepa HS (1978) J. Am. Chem. Soc. 100: 5650CrossRefGoogle Scholar
  26. 26.
    Ponec R, Malek J (1982) Collect. Czech. Chem. Commun. 47: 802Google Scholar
  27. 27.
    Andreozzi P, Klopman G, Hopfinger AJ, Kikuchi O, Dewar MJS (1978) J. Am. Chem. Soc. 100: 6267CrossRefGoogle Scholar
  28. 28.
    Zielinski TJ, Breen DL, Rein R (1978) ibid. 100: 6266CrossRefGoogle Scholar
  29. 29.
    Cone C, Dewar MJS, Landman D (1977) ibid. 99: 372CrossRefGoogle Scholar
  30. 30.
    Dewar MJS, Rzepa HS (1977) ibid. 99: 7432CrossRefGoogle Scholar
  31. 31.
    Heidrich D, Grimmer M, Köhler H-J (1976) Tetrahedron 32: 1193CrossRefGoogle Scholar
  32. 32.
    Köhler H-J, Lischka H (1979) J. Am. Chem. Soc. 101: 3479CrossRefGoogle Scholar
  33. 33.
    Dewar MJS, Ford GP (1977) 99: 7822Google Scholar
  34. 34.
    Dewar MJS (1977) Farad. Discuss. Chem. Soc. 62: 197CrossRefGoogle Scholar
  35. 35.
    Viers JW, Schug JC, Seeman JI (1982) J. Am. Chem. Soc. 104: 850CrossRefGoogle Scholar
  36. 36.
    Wiberg KB (1968) Tetrahedron 24: 1083CrossRefGoogle Scholar
  37. 37.
    Komornicki A, Ishida K, Morukuma K, Ditchfield R, Conrad M (1977) Chem. Phys. Lett. 45: 595CrossRefGoogle Scholar
  38. 38.
    McIver jr. JW, Komornicki A (1971) Chem. Phys. Lett. 10: 303CrossRefGoogle Scholar
  39. 39.
    Pulay P (1971) Molecular Phys. 21: 325Google Scholar
  40. 40.
    Pancir J (1973) Theor. Chim. Acta 29: 21CrossRefGoogle Scholar
  41. 41.
    Bloemer WL, Bruner BL (1973) J. Chem. Phys. 58: 3735CrossRefGoogle Scholar
  42. 42.
    Rauscher HJ, Heidrich D, Köhler H-J, Michel D (1980) Theor. Chim. Acta 57: 255CrossRefGoogle Scholar
  43. 43.
    Griengl H, Schuster P (1974) Tetrahedron 30: 117CrossRefGoogle Scholar
  44. 44.
    Lischka H, Köhler H-J (1978) J. Am. Chem. Soc. 100: 5297CrossRefGoogle Scholar
  45. 45.
    Eyring H, Polanyi M (1931) Z. Phys. Chem. B12: 279Google Scholar
  46. 46.
    Kutzelnigg W (1966) Angew. Chem. 78: 789Google Scholar
  47. 47.
    Hirst DM (1985) Potential Energy Surfaces — Molecular Structure and Reaction Dynamics. Taylor and Francis, London, PhiladelphiaGoogle Scholar
  48. 48.
    Tapia O, Andres J (1984) Chem. Phys. Lett. 109: 471CrossRefGoogle Scholar
  49. 49.
    Schuster P (1969) Monatsh. Chemie 100: 1033CrossRefGoogle Scholar
  50. 50.
    Bölke M, Hallpap P, Heublein G, Heidrich D, Weiss C (1985) Eur. Polym. J. 21: 117CrossRefGoogle Scholar
  51. 51.
    Godnew I (1963) Berechnung thermodynamischer Funktionen aus Moleküldaten. Dtsch. Verlag d. Wissensch., BerlinGoogle Scholar
  52. 52.
    McIver jr. JW, Komornicki A (1972) J. Am. Chem. Soc. 94: 2625CrossRefGoogle Scholar
  53. 53.
    Komornicki A, McIver jr. JW (1973) J. Am. Chem. Soc. 95: 4512; (1974) 96: 5798; (1976) 98: 4553CrossRefGoogle Scholar
  54. 54.
    Murrell JN, Laidler KJ (1968) Trans. Faraday Soc. 64: 371CrossRefGoogle Scholar
  55. 55.
    Eastham AM (1965) in: Encyclopedia of Polymer Science and Technology. Wiley, New York, Vol. III, p. 35Google Scholar
  56. 56.
    Ford GP, Scribner JD (1983) J. Comput. Chem. 4: 594CrossRefGoogle Scholar
  57. 57.
    Reichardt C (1979) Solvent Effects in Organic Chemistry. Verlag Chemie, WeinheimGoogle Scholar
  58. 58.
    Reichardt C (1982) Pure Appl. Chem. 54: 1867Google Scholar
  59. 59.
    Reichardt C, Harbusch-Görnert E Liebigs Ann. Chem. 1983, 731Google Scholar
  60. 60.
    Gutmann V (1976) Electrochim. Acta 21: 661CrossRefGoogle Scholar
  61. 61.
    Kosower EM (1968) An Introduction to Physical Organic Chemistry. Wiley, New YorkGoogle Scholar
  62. 62.
    Taft RW, Abboud J-LM, Kamlet MJ (1984) J. Org. Chem. 49: 2001CrossRefGoogle Scholar
  63. 63.
    Abboud J-LM, Guiheneuf G, Essfar M, Taft RW, Kamlet MJ (1984) J. Phys. Chem. 88: 4414CrossRefGoogle Scholar
  64. 64.
    Claverie P (1978) in: Pullman B (ed): Intermolecular Interactions — from Diatomics to Biopolymers. Wiley, New York, pp 69–306Google Scholar
  65. 65.
    Klopman G (1967) Chem. Phys. Lett. 1: 200CrossRefGoogle Scholar
  66. 66.
    Pullman A, Pullmann B (1975) Quart. Rev. Biophys. 7: 505Google Scholar
  67. 67.
    Curtiss LA, Melendres CA (1984) J. Phys. Chem. 88: 1325CrossRefGoogle Scholar
  68. 68.
    Ventura ON, Bartolucci JP (1984) Theor. Chim. Acta 64: 229CrossRefGoogle Scholar
  69. 69.
    Huron M-J, Claverie P (1972) J. Phys. Chem. 76: 2123CrossRefGoogle Scholar
  70. 70.
    Huron M-J, Claverie P (1974) ibid. 78: 1853, 1862CrossRefGoogle Scholar
  71. 71.
    Bölke M (1985) Thesis, Friedrich-Schiller-Universität Jena, GDRGoogle Scholar
  72. 72.
    Heublein G (1975) Zum Ablauf ionischer Polymerisationsreaktionen. Akademie-Verlag, BerlinGoogle Scholar
  73. 73.
    Heublein G, Hallpap P, Hauptmann S, Mann G (1984) Einführung in die Reaktionstheorie. Dtsch. Verlag f. Grundstoffindustrie, LeipzigGoogle Scholar
  74. 74.
    Heublein G, Hallpap P (1974) Plaste Kautsch. 21: 415Google Scholar
  75. 75.
    Heublein G, Schubert G, Hallpap P (1978) J. Prakt. Chem. 320: 291CrossRefGoogle Scholar
  76. 76.
    Heublein G, Hallpap P, Adler P (1979) Acta Polym. 30: 582CrossRefGoogle Scholar
  77. 77.
    Heublein G, Spange S, Hallpap P (1979) Makromol. Chem. 180: 1935CrossRefGoogle Scholar
  78. 78.
    Zwanziger H, Reinhold J, Hallpap P, Heublein G (1979) J. Prakt. Chem. 321: 1000CrossRefGoogle Scholar
  79. 79.
    Ledwith A, Wood HJ (1966) J. Chem. Soc. B 753Google Scholar
  80. 80.
    Higashimura T, Masuda T, Okamura S, Yonezawa T (1969) J. Polym. Sci. A17: 3129Google Scholar
  81. 81.
    Bell S, Crighton JS (1984) J. Chem. Phys. 80: 2464CrossRefGoogle Scholar
  82. 82.
    Hallpap P, Heublein G (1974) Z. Chem. 14: 438Google Scholar
  83. 83.
    Heublein G, Hallpap P, Wondraczek R, Adler P (1980) Z. Chem. 20: 11Google Scholar
  84. 84.
    Konstatinov C, Kabaivanov V (1971) Polymer 12: 358CrossRefGoogle Scholar
  85. 85.
    Furukawa J, Kobayashi E, Taniguchi S (1974) Bull. Inst. Chem. Res. Kyoto Univ. 52: 472Google Scholar
  86. 86.
    Hallpap P, Spange S, Heublein G, Zwanziger H, Reinhold J (1979) J. Prakt. Chem. 321: 665CrossRefGoogle Scholar
  87. 87.
    Kagiya T, Sumida Y, Nakata T (1968) Bull. Chem. Soc. Jpn. 41: 2239, 2247Google Scholar
  88. 88.
    Ota T (1966) J. Chem. Soc. Japan, Pure Chem. Sect. (Nippon Kagaku Zassi) 87: 320Google Scholar
  89. 89.
    Bölke M, Hallpap P, Heublein G, Erussalimsky BL (1987) Makromol. Chem., Rapid Commun. 8: 7Google Scholar
  90. 90.
    Lossing FP, Holmes JL (1984) J. Am. Chem. Soc. 106: 6917CrossRefGoogle Scholar
  91. 91.
    Rosenstock AM, Draxl K, Steiner BW, Harron JT (1977) J. Phys. Chem. Ref. Data, Suppl. 1: 6Google Scholar
  92. 92.
    Adler P (1979) Thesis, Friedrich-Schiller-Universität Jena, GDRGoogle Scholar
  93. 93.
    Heublein G, Spange S, Adler P (1978) Faserforsch.-Textiltechn. — Z. Polym. Forsch. 29: 513Google Scholar
  94. 94.
    Heublein G, Schubert G, Hallpap P (1978) J. Prakt. Chem. 320: 291CrossRefGoogle Scholar
  95. 95.
    Spange S (1978) Thesis, Friedrich-Schiller-Universität Jena, GDRGoogle Scholar
  96. 96.
    Schubert G (1978) Thesis, Friedrich-Schiller-Universität Jena, GDRGoogle Scholar
  97. 97.
    Heublein G, Dawczynski H (1972) J. Prakt. Chem. 314: 557CrossRefGoogle Scholar
  98. 98.
    Heublein G, Dawczynski H, Hallpap P (1974) Makromol. Chem. 175: 2013CrossRefGoogle Scholar
  99. 99.
    Heublein G, Agatha G, Dawczynski H, Zaleska B (1973) Z. Chem. 13: 432Google Scholar
  100. 100.
    Heublein G, Hallpap P, Draffehn J (1974) Z. Chem. 14: 309Google Scholar
  101. 101.
    Schwetlick K (1971) Kinetische Methoden zur Untersuchung von Reaktionsmechanismen. Dtsch. Verlag d. Wissensch., BerlinGoogle Scholar
  102. 102.
    Olah GA (1973) Angew. Chem. Int. Ed. 12: 173CrossRefGoogle Scholar
  103. 103.
    Olah GA, v Schleyer P (eds) (1968) Carbonium Ions. Wiley-Interscience, New York, (Vol. I), 1970 (Vol. II), 1972 (Vol. III), 1973 (Vol. IV), 1975 (Vol. V)Google Scholar
  104. 104.
    Heidrich D, Grimmer M (1975) Int. J. Quantum Chem. 9: 923CrossRefGoogle Scholar
  105. 105.
    Nobes RH, Bouma WJ, Radom L (1983) J. Am. Chem. Soc. 105: 309CrossRefGoogle Scholar
  106. 106.
    Lien MH, Hopkinson AC (1984) J. Phys. Chem. 88: 1513CrossRefGoogle Scholar
  107. 107.
    Harris JM, Shafer SG (1982) J. Comput. Chem. 3: 208CrossRefGoogle Scholar
  108. 108.
    Hallpap P, Bölke M, Hartung H, Stadermann D, Heublein G Acta Polym. in press.Google Scholar
  109. 109.
    Bölke M, Hallpap P, Heublein G, Stepanov VV, Skorochodov SS, Heidrich D, Weiss C (1985) Makromol. Chem., Rapid Commun. 6: 485Google Scholar
  110. 110.
    Ohsumi Y, Higashimura T, Okamura S, Chiyo R, Kuroda T (1967) J. Polym. Sci. A1 5: 3009Google Scholar
  111. 111.
    Stepanov VV, Klenin SM, Troickaja AV, Skorochodov SS (1976) Vysokomol. Soedin., Ser. A 18: 821Google Scholar
  112. 112.
    Erussalimsky BL (1983) Acta Polym. 34: 667CrossRefGoogle Scholar
  113. 113.
    Page MI (1973) Chem. Soc. Rev. 2: 295CrossRefGoogle Scholar
  114. 114.
    Hallpap P, Stadermann D (1984) Stereochemie organisch-chemischer Reaktionen. Akademie-Verlag, BerlinGoogle Scholar
  115. 115.
    Pepper DC (1949) Trans. Faraday Soc. 45: 404CrossRefGoogle Scholar
  116. 116.
    Jones FR, Plesch PH J. Chem. Soc., Dalton Trans. 1979, 927Google Scholar
  117. 117.
    Kennedy JP, Smith RC (1979) Polym. Prepr. 20: 316Google Scholar
  118. 118.
    Lossing FP, Semeluk GP (1970) Can. J. Chem. 48: 955Google Scholar
  119. 119.
    Bohme DK, Mackay GI (1981) J. Am. Chem. Soc. 103: 2173CrossRefGoogle Scholar
  120. 120.
    Lossing FP, Macoll A (1976) Can. J. Chem. 54: 990Google Scholar
  121. 121.
    Aue DH, Bowers MT (1979) in: Bowers MT (ed) Gas Phase Ion Chemistry. Academic Press, New York, Vol. 2, Chapt. 9Google Scholar
  122. 122.
    Bölke M, Hallpap P, Spange S, Dreier R, Heublein G (1987) Makromol. Chem., Rapid Commun. 8: 507Google Scholar
  123. 123.
    Kennedy JP (1975) Cationic Polymerization of Olefines: A Critical Inventury. Wiley, New YorkGoogle Scholar
  124. 124.
    Bazilevskij MV, Petrochenko SI, Tikhomirov VA (1983) Zh. strukt. Khim. 23: 42Google Scholar
  125. 125.
    Basilevski MV, Gerasimov GN, Petrochenko SI, Tikhomirov VA (1981) Chem. Phys. 55: 259CrossRefGoogle Scholar
  126. 126.
    Karpfen A, Beyer A (1984) J. Comput. Chem. 5: 11CrossRefGoogle Scholar
  127. 127.
    Teramae H, Yamabe T (1983) Theor. Chim. Acta 64: 1CrossRefGoogle Scholar
  128. 128.
    Duke BJ, O'Leary D (1963) J. Chem. Phys. 79: 3424CrossRefGoogle Scholar
  129. 129.
    Collyer SM, McMahon TB (1983) Chem. Phys. Lett. 87: 909Google Scholar
  130. 130.
    Köhler H-J (1979) Wiss. Z. KMU Leipzig 28: 625Google Scholar
  131. 131.
    Bölke M, Hallpap P, Heublein G, Weiss C (1986) Eur. Polym. J. 22: 817CrossRefGoogle Scholar
  132. 132.
    Stull DR, Westrum jr. EF, Sinke GC (1969) The Chemical Thermodynamics of Organic Compounds. Wiley, New YorkGoogle Scholar
  133. 133.
    Sordo T, Arumi M, Bertran J J. Chem. Soc., Perkin Trans. II 1980, 708Google Scholar
  134. 134.
    Bertran J, Anguiano J, Oliva A (1983) Croat. Chem. Acta 56: 169Google Scholar
  135. 135.
    Sordo T, Campillo M, Oliva A, Bertran J (1982) Chem. Phys. Lett. 85: 225CrossRefGoogle Scholar
  136. 136.
    Bertran J (1982) Stud. Phys. Theor. Chem. 21: 379Google Scholar
  137. 137.
    Dewar MJS, Olivella S (1978) J. Am. Chem. Soc. 100: 5290CrossRefGoogle Scholar
  138. 138.
    Clark DT, Scanlan IW, Walton JC (1978) Chem. Phys. Lett. 55: 102CrossRefGoogle Scholar
  139. 139.
    Abell PI (1976) in: Bamford CH, Tipper CFH (ed) Comprehensive Chemical Kinetics. Elsevier, Amsterdam, Vol. 18, p 111Google Scholar
  140. 140.
    Demontis P, Gamba A, Suffritti GB, Simonetta M J. Chem. Soc., Perkin Trans. II 1983, 997Google Scholar
  141. 141.
    Chandrasekhar J, Smith SF, Jørgenson WL (1984) J. Am. Chem. Soc. 106: 3049CrossRefGoogle Scholar
  142. 142.
    Cao HZ, Allavena M, Tapia O, Evleth EM (1983) Chem. Phys. Lett. 96: 458CrossRefGoogle Scholar
  143. 143.
    Koller J, Hodoscek M, Hadzi D (1984) J. Mol. Struct. 106: 301Google Scholar
  144. 144.
    Bazilevskij MV, Koldobskij SG (1984) Zh. Org. Chim. 20: 908Google Scholar
  145. 145.
    Noell JO, Morokuma K (1976) J. Phys. Chem. 80: 2675CrossRefGoogle Scholar
  146. 146.
    Hallpap P, Bölke M, Heublein G, Weiss C (1986) Makromol. Chem., Macromol. Symp. 3: 47Google Scholar
  147. 147.
    Bölke M, Hallpap P, Heublein G in prep.Google Scholar
  148. 148.
    Dostal H (1936) Mh. Chemie 69: 424Google Scholar
  149. 149.
    Marek M, Chmelir M (1968) J. Polym. Sci. C 23: 223Google Scholar
  150. 150.
    Kolditz L, Kauschka G (1974) in: Neuere Entwicklungen der anorganischen Chemie. Dtsch. Verlag d. Wissensch., Berlin, p 77Google Scholar
  151. 151.
    Hallpap P, Heublein G, Nieke C, Reinhold J, Eizner Y, Kolzow AI (1986) J. Prakt. Chem. 328: 750CrossRefGoogle Scholar
  152. 152.
    Smith JD (1973) in: Comprehensive Inorganic Chemistry. Pergamon Press, Oxford, Vol. 2Google Scholar
  153. 153.
    Hallpap P, Heublein G, Bartzsch C, Nieke C, Weiss C, Reinhold J (1986) Acta Polym. 37: 659CrossRefGoogle Scholar
  154. 154.
    Heublein G, Grimmer C, Spange S (1980) J. Prakt. Chem. 322: 223CrossRefGoogle Scholar
  155. 155.
    Schäfer H (1977) Pure Appl. Chem. 49: 871Google Scholar
  156. 156.
    Preiss H (1966) Z. Chem. 6: 350Google Scholar
  157. 157.
    Ballhard JG, Birchall T, Slim DR Chem. Commun. 1976, 653Google Scholar
  158. 158.
    Edwards AJ, Taylor P ibid. 1971, 1376Google Scholar
  159. 159.
    Preiss H (1972) Z. Anorg. Allg. Chem. 389: 254CrossRefGoogle Scholar
  160. 160.
    Miller HB, Baird WH, Bramlett CL, Templeton WK Chem. Commun. 1972, 262Google Scholar
  161. 161.
    Porter RF, Bidinost RD, Watterson KF (1962) J. Chem. Phys. 36: 2104CrossRefGoogle Scholar
  162. 162.
    Gobeau J, Richter DE, Richter HJ (1955) Z. Anorg. Allg. Chem. 278: 12CrossRefGoogle Scholar
  163. 163.
    Grattan DW, Plesch PH J. Chem. Soc., Dalton Trans. 1977, 1734Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Peter Hallpap
  • Martin Bölke
  • Günther Heublein
    • 1
  1. 1.Sektion Chemie der Friedrich-Schiller-Universität JenaJenaGDR

Personalised recommendations