Skip to main content

Elucidation of cationic polymerization mechanisms by means of quantum chemical methods

  • Conference paper
  • First Online:
Book cover Polysiloxane Copolymers/Anionic Polymerization

Part of the book series: Advances in Polymer Science ((POLYMER,volume 86))

  • 214 Accesses

Abstract

This article reviews results of application of quantum chemical calculations to the cationic polymerization of vinyl monomers and explains the advantages as well as the disadvantages of quantum chemical model calculations while examining complex mechanisms. After describing methods and approximations which are often used and some methodical extensions, this article demonstrates by using results of quantum chemical calculations that the theoretical models are able to interpret and to quantify effects found by the experiment. Furthermore, these calculations are able to assert in the sense of reaction theory how to control reactions and to improve understanding of cationic polymerization. Among other things, the modelling of the processes of the cationic homo- and copolymerization, the calculations on the stability of cations and complex counterions and also the estimations on the polymerizing ability of monomers are examples for this. Moreover, it was found in special cases that it is necessary to consider the solvent influence as one the most important factors affecting ionic reactions by theoretical models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6 References

  1. Gandini A, Cheradame H (1980) Adv. Polym. Sci. 34/35: 1

    Google Scholar 

  2. Kennedy JP, Marechal E (1982) Carbocationic Polymerization, Wiley-Interscience, New York

    Google Scholar 

  3. Goethals EJ (ed) (1984) Cationic Polymerization and Related Processes. Academic Press, London

    Google Scholar 

  4. Heublein G (ed) (1986) Macromol. Chem., Macromol. Symp. 3: 1

    Google Scholar 

  5. Hallpap P, Heublein G (1984) Plaste Kautsch. 31: 161

    Google Scholar 

  6. Birner P, Hofmann H-J, Weiss C (1979) MO-theoretische Methoden in der organischen Chemie. Akademie-Verlag, Berlin

    Google Scholar 

  7. Eizner JuE, Erussalimskij BL (1976) Elektronnyj Aspekt Reakcij Polymerizacii. Nauka, Leningrad

    Google Scholar 

  8. Heilbronner E, Bock H (1970) Das HMO-Modell und seine Anwendung. Verlag Chemie, Weinheim

    Google Scholar 

  9. Streitwieser jr A (1952) Molecular Orbital Theory for Organic Chemists. Wiley, New York, London

    Google Scholar 

  10. Hoffmann R (1963) J. Chem. Phys. 39: 1397

    Article  Google Scholar 

  11. Pople JA, Beveridge DL (1970) Approximate Molecular Orbital Theory. McGraw Hill, New York

    Google Scholar 

  12. Bingham RC, Dewar MJS, Lo DH (1975) J. Am. Chem. Soc. 97: 1285, 1294, 1302, 1307

    Article  Google Scholar 

  13. Hallpap P, Heublein G, Bogomolni VJa, Eizner YuYe, Erussalimskii BL, Skorochodov SS (1978) Eur. Polym. J. 14: 1027

    Article  Google Scholar 

  14. Hallpap P, Heublein G (1975) Z. Chem. 15: 404

    Google Scholar 

  15. Hallpap P, Heublein G (1975) ibid. 15: 486

    Google Scholar 

  16. Hallpap P, Heublein G (1976) ibid. 16: 21

    Google Scholar 

  17. Haouam A, Surrateanu G, Comanita E, Simionescu CI (1981) Bull. Inst. Politeh. Ioasi, Sect. 2: Chim. Ing. Chim. 27: 83; (1982) CA 97: 216769h

    Google Scholar 

  18. Hallpap P, Heublein G, Grüntzig C, Reinhold J (1984) J. Prakt. Chem. 326: 537

    Article  Google Scholar 

  19. Hallpap P, Heublein G, Grüntzig C, Zwanziger H, Reinhold J (1982) Acta Polym. 33: 358, 362

    Article  Google Scholar 

  20. Kawamura T, Uryu T, Matsuzaki K (1982) Makromol. Chem. 183: 125

    Article  Google Scholar 

  21. Dewar MJS, Haddon RC, Suck SH J. Chem. Soc., Chem. Commun. 1974, 611

    Google Scholar 

  22. Dewar MJS, Ford GP (1977) J. Am. Chem. Soc. 99: 1685

    Article  Google Scholar 

  23. Dannenberg JJ, Abrams C, Decoret C, Rayez JC, Metras F (1983) J. Org. Chem. 48: 3315

    Article  Google Scholar 

  24. Schleyer PvR, Kos AJ, Raghavachari K J. Chem. Soc., Chem. Commun. 1983, 1296

    Google Scholar 

  25. Dewar MJS, Olivella S, Rzepa HS (1978) J. Am. Chem. Soc. 100: 5650

    Article  Google Scholar 

  26. Ponec R, Malek J (1982) Collect. Czech. Chem. Commun. 47: 802

    Google Scholar 

  27. Andreozzi P, Klopman G, Hopfinger AJ, Kikuchi O, Dewar MJS (1978) J. Am. Chem. Soc. 100: 6267

    Article  Google Scholar 

  28. Zielinski TJ, Breen DL, Rein R (1978) ibid. 100: 6266

    Article  Google Scholar 

  29. Cone C, Dewar MJS, Landman D (1977) ibid. 99: 372

    Article  Google Scholar 

  30. Dewar MJS, Rzepa HS (1977) ibid. 99: 7432

    Article  Google Scholar 

  31. Heidrich D, Grimmer M, Köhler H-J (1976) Tetrahedron 32: 1193

    Article  Google Scholar 

  32. Köhler H-J, Lischka H (1979) J. Am. Chem. Soc. 101: 3479

    Article  Google Scholar 

  33. Dewar MJS, Ford GP (1977) 99: 7822

    Google Scholar 

  34. Dewar MJS (1977) Farad. Discuss. Chem. Soc. 62: 197

    Article  Google Scholar 

  35. Viers JW, Schug JC, Seeman JI (1982) J. Am. Chem. Soc. 104: 850

    Article  Google Scholar 

  36. Wiberg KB (1968) Tetrahedron 24: 1083

    Article  Google Scholar 

  37. Komornicki A, Ishida K, Morukuma K, Ditchfield R, Conrad M (1977) Chem. Phys. Lett. 45: 595

    Article  Google Scholar 

  38. McIver jr. JW, Komornicki A (1971) Chem. Phys. Lett. 10: 303

    Article  Google Scholar 

  39. Pulay P (1971) Molecular Phys. 21: 325

    Google Scholar 

  40. Pancir J (1973) Theor. Chim. Acta 29: 21

    Article  Google Scholar 

  41. Bloemer WL, Bruner BL (1973) J. Chem. Phys. 58: 3735

    Article  Google Scholar 

  42. Rauscher HJ, Heidrich D, Köhler H-J, Michel D (1980) Theor. Chim. Acta 57: 255

    Article  Google Scholar 

  43. Griengl H, Schuster P (1974) Tetrahedron 30: 117

    Article  Google Scholar 

  44. Lischka H, Köhler H-J (1978) J. Am. Chem. Soc. 100: 5297

    Article  Google Scholar 

  45. Eyring H, Polanyi M (1931) Z. Phys. Chem. B12: 279

    Google Scholar 

  46. Kutzelnigg W (1966) Angew. Chem. 78: 789

    Google Scholar 

  47. Hirst DM (1985) Potential Energy Surfaces — Molecular Structure and Reaction Dynamics. Taylor and Francis, London, Philadelphia

    Google Scholar 

  48. Tapia O, Andres J (1984) Chem. Phys. Lett. 109: 471

    Article  Google Scholar 

  49. Schuster P (1969) Monatsh. Chemie 100: 1033

    Article  Google Scholar 

  50. Bölke M, Hallpap P, Heublein G, Heidrich D, Weiss C (1985) Eur. Polym. J. 21: 117

    Article  Google Scholar 

  51. Godnew I (1963) Berechnung thermodynamischer Funktionen aus Moleküldaten. Dtsch. Verlag d. Wissensch., Berlin

    Google Scholar 

  52. McIver jr. JW, Komornicki A (1972) J. Am. Chem. Soc. 94: 2625

    Article  Google Scholar 

  53. Komornicki A, McIver jr. JW (1973) J. Am. Chem. Soc. 95: 4512; (1974) 96: 5798; (1976) 98: 4553

    Article  Google Scholar 

  54. Murrell JN, Laidler KJ (1968) Trans. Faraday Soc. 64: 371

    Article  Google Scholar 

  55. Eastham AM (1965) in: Encyclopedia of Polymer Science and Technology. Wiley, New York, Vol. III, p. 35

    Google Scholar 

  56. Ford GP, Scribner JD (1983) J. Comput. Chem. 4: 594

    Article  Google Scholar 

  57. Reichardt C (1979) Solvent Effects in Organic Chemistry. Verlag Chemie, Weinheim

    Google Scholar 

  58. Reichardt C (1982) Pure Appl. Chem. 54: 1867

    Google Scholar 

  59. Reichardt C, Harbusch-Görnert E Liebigs Ann. Chem. 1983, 731

    Google Scholar 

  60. Gutmann V (1976) Electrochim. Acta 21: 661

    Article  Google Scholar 

  61. Kosower EM (1968) An Introduction to Physical Organic Chemistry. Wiley, New York

    Google Scholar 

  62. Taft RW, Abboud J-LM, Kamlet MJ (1984) J. Org. Chem. 49: 2001

    Article  Google Scholar 

  63. Abboud J-LM, Guiheneuf G, Essfar M, Taft RW, Kamlet MJ (1984) J. Phys. Chem. 88: 4414

    Article  Google Scholar 

  64. Claverie P (1978) in: Pullman B (ed): Intermolecular Interactions — from Diatomics to Biopolymers. Wiley, New York, pp 69–306

    Google Scholar 

  65. Klopman G (1967) Chem. Phys. Lett. 1: 200

    Article  Google Scholar 

  66. Pullman A, Pullmann B (1975) Quart. Rev. Biophys. 7: 505

    Google Scholar 

  67. Curtiss LA, Melendres CA (1984) J. Phys. Chem. 88: 1325

    Article  Google Scholar 

  68. Ventura ON, Bartolucci JP (1984) Theor. Chim. Acta 64: 229

    Article  Google Scholar 

  69. Huron M-J, Claverie P (1972) J. Phys. Chem. 76: 2123

    Article  Google Scholar 

  70. Huron M-J, Claverie P (1974) ibid. 78: 1853, 1862

    Article  Google Scholar 

  71. Bölke M (1985) Thesis, Friedrich-Schiller-Universität Jena, GDR

    Google Scholar 

  72. Heublein G (1975) Zum Ablauf ionischer Polymerisationsreaktionen. Akademie-Verlag, Berlin

    Google Scholar 

  73. Heublein G, Hallpap P, Hauptmann S, Mann G (1984) Einführung in die Reaktionstheorie. Dtsch. Verlag f. Grundstoffindustrie, Leipzig

    Google Scholar 

  74. Heublein G, Hallpap P (1974) Plaste Kautsch. 21: 415

    Google Scholar 

  75. Heublein G, Schubert G, Hallpap P (1978) J. Prakt. Chem. 320: 291

    Article  Google Scholar 

  76. Heublein G, Hallpap P, Adler P (1979) Acta Polym. 30: 582

    Article  Google Scholar 

  77. Heublein G, Spange S, Hallpap P (1979) Makromol. Chem. 180: 1935

    Article  Google Scholar 

  78. Zwanziger H, Reinhold J, Hallpap P, Heublein G (1979) J. Prakt. Chem. 321: 1000

    Article  Google Scholar 

  79. Ledwith A, Wood HJ (1966) J. Chem. Soc. B 753

    Google Scholar 

  80. Higashimura T, Masuda T, Okamura S, Yonezawa T (1969) J. Polym. Sci. A17: 3129

    Google Scholar 

  81. Bell S, Crighton JS (1984) J. Chem. Phys. 80: 2464

    Article  Google Scholar 

  82. Hallpap P, Heublein G (1974) Z. Chem. 14: 438

    Google Scholar 

  83. Heublein G, Hallpap P, Wondraczek R, Adler P (1980) Z. Chem. 20: 11

    Google Scholar 

  84. Konstatinov C, Kabaivanov V (1971) Polymer 12: 358

    Article  Google Scholar 

  85. Furukawa J, Kobayashi E, Taniguchi S (1974) Bull. Inst. Chem. Res. Kyoto Univ. 52: 472

    Google Scholar 

  86. Hallpap P, Spange S, Heublein G, Zwanziger H, Reinhold J (1979) J. Prakt. Chem. 321: 665

    Article  Google Scholar 

  87. Kagiya T, Sumida Y, Nakata T (1968) Bull. Chem. Soc. Jpn. 41: 2239, 2247

    Google Scholar 

  88. Ota T (1966) J. Chem. Soc. Japan, Pure Chem. Sect. (Nippon Kagaku Zassi) 87: 320

    Google Scholar 

  89. Bölke M, Hallpap P, Heublein G, Erussalimsky BL (1987) Makromol. Chem., Rapid Commun. 8: 7

    Google Scholar 

  90. Lossing FP, Holmes JL (1984) J. Am. Chem. Soc. 106: 6917

    Article  Google Scholar 

  91. Rosenstock AM, Draxl K, Steiner BW, Harron JT (1977) J. Phys. Chem. Ref. Data, Suppl. 1: 6

    Google Scholar 

  92. Adler P (1979) Thesis, Friedrich-Schiller-Universität Jena, GDR

    Google Scholar 

  93. Heublein G, Spange S, Adler P (1978) Faserforsch.-Textiltechn. — Z. Polym. Forsch. 29: 513

    Google Scholar 

  94. Heublein G, Schubert G, Hallpap P (1978) J. Prakt. Chem. 320: 291

    Article  Google Scholar 

  95. Spange S (1978) Thesis, Friedrich-Schiller-Universität Jena, GDR

    Google Scholar 

  96. Schubert G (1978) Thesis, Friedrich-Schiller-Universität Jena, GDR

    Google Scholar 

  97. Heublein G, Dawczynski H (1972) J. Prakt. Chem. 314: 557

    Article  Google Scholar 

  98. Heublein G, Dawczynski H, Hallpap P (1974) Makromol. Chem. 175: 2013

    Article  Google Scholar 

  99. Heublein G, Agatha G, Dawczynski H, Zaleska B (1973) Z. Chem. 13: 432

    Google Scholar 

  100. Heublein G, Hallpap P, Draffehn J (1974) Z. Chem. 14: 309

    Google Scholar 

  101. Schwetlick K (1971) Kinetische Methoden zur Untersuchung von Reaktionsmechanismen. Dtsch. Verlag d. Wissensch., Berlin

    Google Scholar 

  102. Olah GA (1973) Angew. Chem. Int. Ed. 12: 173

    Article  Google Scholar 

  103. Olah GA, v Schleyer P (eds) (1968) Carbonium Ions. Wiley-Interscience, New York, (Vol. I), 1970 (Vol. II), 1972 (Vol. III), 1973 (Vol. IV), 1975 (Vol. V)

    Google Scholar 

  104. Heidrich D, Grimmer M (1975) Int. J. Quantum Chem. 9: 923

    Article  Google Scholar 

  105. Nobes RH, Bouma WJ, Radom L (1983) J. Am. Chem. Soc. 105: 309

    Article  Google Scholar 

  106. Lien MH, Hopkinson AC (1984) J. Phys. Chem. 88: 1513

    Article  Google Scholar 

  107. Harris JM, Shafer SG (1982) J. Comput. Chem. 3: 208

    Article  Google Scholar 

  108. Hallpap P, Bölke M, Hartung H, Stadermann D, Heublein G Acta Polym. in press.

    Google Scholar 

  109. Bölke M, Hallpap P, Heublein G, Stepanov VV, Skorochodov SS, Heidrich D, Weiss C (1985) Makromol. Chem., Rapid Commun. 6: 485

    Google Scholar 

  110. Ohsumi Y, Higashimura T, Okamura S, Chiyo R, Kuroda T (1967) J. Polym. Sci. A1 5: 3009

    Google Scholar 

  111. Stepanov VV, Klenin SM, Troickaja AV, Skorochodov SS (1976) Vysokomol. Soedin., Ser. A 18: 821

    Google Scholar 

  112. Erussalimsky BL (1983) Acta Polym. 34: 667

    Article  Google Scholar 

  113. Page MI (1973) Chem. Soc. Rev. 2: 295

    Article  Google Scholar 

  114. Hallpap P, Stadermann D (1984) Stereochemie organisch-chemischer Reaktionen. Akademie-Verlag, Berlin

    Google Scholar 

  115. Pepper DC (1949) Trans. Faraday Soc. 45: 404

    Article  Google Scholar 

  116. Jones FR, Plesch PH J. Chem. Soc., Dalton Trans. 1979, 927

    Google Scholar 

  117. Kennedy JP, Smith RC (1979) Polym. Prepr. 20: 316

    Google Scholar 

  118. Lossing FP, Semeluk GP (1970) Can. J. Chem. 48: 955

    Google Scholar 

  119. Bohme DK, Mackay GI (1981) J. Am. Chem. Soc. 103: 2173

    Article  Google Scholar 

  120. Lossing FP, Macoll A (1976) Can. J. Chem. 54: 990

    Google Scholar 

  121. Aue DH, Bowers MT (1979) in: Bowers MT (ed) Gas Phase Ion Chemistry. Academic Press, New York, Vol. 2, Chapt. 9

    Google Scholar 

  122. Bölke M, Hallpap P, Spange S, Dreier R, Heublein G (1987) Makromol. Chem., Rapid Commun. 8: 507

    Google Scholar 

  123. Kennedy JP (1975) Cationic Polymerization of Olefines: A Critical Inventury. Wiley, New York

    Google Scholar 

  124. Bazilevskij MV, Petrochenko SI, Tikhomirov VA (1983) Zh. strukt. Khim. 23: 42

    Google Scholar 

  125. Basilevski MV, Gerasimov GN, Petrochenko SI, Tikhomirov VA (1981) Chem. Phys. 55: 259

    Article  Google Scholar 

  126. Karpfen A, Beyer A (1984) J. Comput. Chem. 5: 11

    Article  Google Scholar 

  127. Teramae H, Yamabe T (1983) Theor. Chim. Acta 64: 1

    Article  Google Scholar 

  128. Duke BJ, O'Leary D (1963) J. Chem. Phys. 79: 3424

    Article  Google Scholar 

  129. Collyer SM, McMahon TB (1983) Chem. Phys. Lett. 87: 909

    Google Scholar 

  130. Köhler H-J (1979) Wiss. Z. KMU Leipzig 28: 625

    Google Scholar 

  131. Bölke M, Hallpap P, Heublein G, Weiss C (1986) Eur. Polym. J. 22: 817

    Article  Google Scholar 

  132. Stull DR, Westrum jr. EF, Sinke GC (1969) The Chemical Thermodynamics of Organic Compounds. Wiley, New York

    Google Scholar 

  133. Sordo T, Arumi M, Bertran J J. Chem. Soc., Perkin Trans. II 1980, 708

    Google Scholar 

  134. Bertran J, Anguiano J, Oliva A (1983) Croat. Chem. Acta 56: 169

    Google Scholar 

  135. Sordo T, Campillo M, Oliva A, Bertran J (1982) Chem. Phys. Lett. 85: 225

    Article  Google Scholar 

  136. Bertran J (1982) Stud. Phys. Theor. Chem. 21: 379

    Google Scholar 

  137. Dewar MJS, Olivella S (1978) J. Am. Chem. Soc. 100: 5290

    Article  Google Scholar 

  138. Clark DT, Scanlan IW, Walton JC (1978) Chem. Phys. Lett. 55: 102

    Article  Google Scholar 

  139. Abell PI (1976) in: Bamford CH, Tipper CFH (ed) Comprehensive Chemical Kinetics. Elsevier, Amsterdam, Vol. 18, p 111

    Google Scholar 

  140. Demontis P, Gamba A, Suffritti GB, Simonetta M J. Chem. Soc., Perkin Trans. II 1983, 997

    Google Scholar 

  141. Chandrasekhar J, Smith SF, Jørgenson WL (1984) J. Am. Chem. Soc. 106: 3049

    Article  Google Scholar 

  142. Cao HZ, Allavena M, Tapia O, Evleth EM (1983) Chem. Phys. Lett. 96: 458

    Article  Google Scholar 

  143. Koller J, Hodoscek M, Hadzi D (1984) J. Mol. Struct. 106: 301

    Google Scholar 

  144. Bazilevskij MV, Koldobskij SG (1984) Zh. Org. Chim. 20: 908

    Google Scholar 

  145. Noell JO, Morokuma K (1976) J. Phys. Chem. 80: 2675

    Article  Google Scholar 

  146. Hallpap P, Bölke M, Heublein G, Weiss C (1986) Makromol. Chem., Macromol. Symp. 3: 47

    Google Scholar 

  147. Bölke M, Hallpap P, Heublein G in prep.

    Google Scholar 

  148. Dostal H (1936) Mh. Chemie 69: 424

    Google Scholar 

  149. Marek M, Chmelir M (1968) J. Polym. Sci. C 23: 223

    Google Scholar 

  150. Kolditz L, Kauschka G (1974) in: Neuere Entwicklungen der anorganischen Chemie. Dtsch. Verlag d. Wissensch., Berlin, p 77

    Google Scholar 

  151. Hallpap P, Heublein G, Nieke C, Reinhold J, Eizner Y, Kolzow AI (1986) J. Prakt. Chem. 328: 750

    Article  Google Scholar 

  152. Smith JD (1973) in: Comprehensive Inorganic Chemistry. Pergamon Press, Oxford, Vol. 2

    Google Scholar 

  153. Hallpap P, Heublein G, Bartzsch C, Nieke C, Weiss C, Reinhold J (1986) Acta Polym. 37: 659

    Article  Google Scholar 

  154. Heublein G, Grimmer C, Spange S (1980) J. Prakt. Chem. 322: 223

    Article  Google Scholar 

  155. Schäfer H (1977) Pure Appl. Chem. 49: 871

    Google Scholar 

  156. Preiss H (1966) Z. Chem. 6: 350

    Google Scholar 

  157. Ballhard JG, Birchall T, Slim DR Chem. Commun. 1976, 653

    Google Scholar 

  158. Edwards AJ, Taylor P ibid. 1971, 1376

    Google Scholar 

  159. Preiss H (1972) Z. Anorg. Allg. Chem. 389: 254

    Article  Google Scholar 

  160. Miller HB, Baird WH, Bramlett CL, Templeton WK Chem. Commun. 1972, 262

    Google Scholar 

  161. Porter RF, Bidinost RD, Watterson KF (1962) J. Chem. Phys. 36: 2104

    Article  Google Scholar 

  162. Gobeau J, Richter DE, Richter HJ (1955) Z. Anorg. Allg. Chem. 278: 12

    Article  Google Scholar 

  163. Grattan DW, Plesch PH J. Chem. Soc., Dalton Trans. 1977, 1734

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag

About this paper

Cite this paper

Hallpap, P., Bölke, M., Heublein, G. (1988). Elucidation of cationic polymerization mechanisms by means of quantum chemical methods. In: Polysiloxane Copolymers/Anionic Polymerization. Advances in Polymer Science, vol 86. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0025277

Download citation

  • DOI: https://doi.org/10.1007/BFb0025277

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-18506-2

  • Online ISBN: 978-3-540-47994-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics