Skip to main content

Physiological activities of synthetic analogs of polynucleotides

  • Conference paper
  • First Online:
Unusual Properties of New Polymers

Part of the book series: Advances in Polymer Science ((POLYMER,volume 50))

Abstract

The term polynucleotide is usually used for an analog or a fragment of nucleic acids. As with other important natural compounds, more distant analogs of polynucleotides, were synthesized and studied. In this review polymers which have backbones analogous to those of plastics and substituents analogous to those of polynucleotides are described; further in the text these compounds are named polynucleotide analogs. The interactions of polynucleotide analogs with natural polynucleotides and related proteins are described. These interactions strongly depend on the electric charge of polynucleotide analogs. Electroneutral analogs of polynucleotides interact with natural polynucleotides in a specific manner forming base-pair type complexes. On the other hand, the enzymes of nucleic acid synthesis are not directly bound by these polymers. Because neither polynucleotide analogs nor complexes of these analogs and natural polynucleotides can act as templates in biosynthesis, polynucleotide analogs can be used to block the natural ones and thus, to act as template-specific inhibitors of nucleic acid and protein biosynthesis. This inhibitory action of polynucleotide analogs is strong and specific in cell-free systems, and because they are not biodegradable it may be assumed that the effects of these polymers on cells or animals would also be strong and long-lasting. However, this is not the case; these effects were found to be rather weak and short-lasting. The observed decrease in effectiveness is the result of two factors: a) the ability of polymers to penetrate into the interior of cells is very low and b) by autophagy, the cells are able to capture foreign polymers, that penetrate their cytoplasm, in membrane-coated vesicles and thus, isolate these polymers from the processes occurring in the cell interior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7 References

  1. Overberger, C. G., Michelotti, F. W.: J. Am. Chem. Soc. 80, 988 (1957)

    Article  Google Scholar 

  2. Hoffmann, S., Witkowski, W.: Wirkungsmechanismen von Herbiciden und Synthetischen Wachstumregulatoren, p. 291, RGW-Symposium Halle 1972, VEB Gustav Fischer 1975

    Google Scholar 

  3. Hoffmann, S.: Z. Chem. 19, 241 (1979)

    Google Scholar 

  4. Kaye, H.: J. Am. Chem. Soc. 29, 5777 (1970)

    Article  Google Scholar 

  5. Pitha, J., Pitha, P. M., Ts'o, P. O. P.: Biochim. Biophys. Acta 204, 39 (1970)

    PubMed  Google Scholar 

  6. Pitha, P. M., Pitha, J.: Biopolymers 9, 965 (1970)

    Article  PubMed  Google Scholar 

  7. Pitha, J., Pitha, P. M., Stuart, E.: Biochemistry 10, 4595 (1971)

    Article  PubMed  Google Scholar 

  8. Pitha, P. M., Michelson, A. M.: Biochim. Biophys. Acta 204, 381 (1970)

    PubMed  Google Scholar 

  9. Pitha, J., Pitha, P. M.: Science 172, 1146 (1971)

    PubMed  Google Scholar 

  10. Reynolds, F. et al.: Biochemistry 11, 3261 (1972)

    Article  PubMed  Google Scholar 

  11. Pitha, J.: Anal. Biochem. 65, 422 (1975)

    Article  PubMed  Google Scholar 

  12. Chou, H. J., Froehlich, J. P., Pitha, J.: Nucl. Acids Res. 5, 691 (1978)

    PubMed  Google Scholar 

  13. Boguslawski, S., Olson, P. E., Mertes, M. P.: Biochemistry 15, 3536 (1976)

    Article  PubMed  Google Scholar 

  14. Olson, P. E. et al.: Biochemistry 14, 4892 (1975)

    Article  PubMed  Google Scholar 

  15. Maggiora, L., Boguslawski, S., Mertes, M. P.: J. Med. Chem. 20, 1283 (1977)

    Article  PubMed  Google Scholar 

  16. Cowling, G. J., Jones, A. S., Walker, R. T.: Biochim. Biophys. Acta 254, 452 (1971)

    PubMed  Google Scholar 

  17. Pitha, J., Wilson, S. H.: Nucl. Acids Res. 3, 825 (1976)

    PubMed  Google Scholar 

  18. Hoffmann, S. et al.: Z. Chem. 16, 322 (1976)

    Google Scholar 

  19. Reynolds, F. H. et al.: Mol. Pharmacol. 11, 708 (1975)

    PubMed  Google Scholar 

  20. Pitha, P. M. et al.: Proc. Natl. Acad. Sci. USA 70, 1204 (1973)

    PubMed  Google Scholar 

  21. Pitha, J.: Cancer Res. 36, 1273 (1976)

    PubMed  Google Scholar 

  22. Hoffmann, S. et al.: Z. Chem. 16, 402 (1976)

    Google Scholar 

  23. Pitha, P. M., Pitha, J.: Pharmac. Ther. A 2, 247 (1978)

    Google Scholar 

  24. Papas, T. S., Pry, T. W., Chrigos, M. A.: Proc. Natl. Acad. Sci. USA 71, 367 (1974)

    PubMed  Google Scholar 

  25. Jacoby, W. B., Pastan, I. H.: Meth. Enzymol. 58 (1979)

    Google Scholar 

  26. Schneider, E. L., Mitsui, Y.: Proc. Natl. Acad. Sci. USA 73, 3584 (1976)

    PubMed  Google Scholar 

  27. Baer, H. P., Drummond, G. I. (eds.): Physiological and Regulatory Functions of Adenosine and Adenine Nucleotides, Raven Press, New York 1979

    Google Scholar 

  28. Daly, J. W., Bruns, R. F., Snyder, S. H.: Life Sci. 28, 2083 (1981)

    Article  PubMed  Google Scholar 

  29. Olsson, R. A., Davis, C. C., Khoun, E. M.: Life Sci. 21, 1343 (1977)

    Article  PubMed  Google Scholar 

  30. Ishii, K., Green, H.: J. Cell. Sci. 13, 429 (1973)

    PubMed  Google Scholar 

  31. Thomas, G. A., Varney, N. F., Burton, K.: Biochem. J. 120, 117 (1970)

    PubMed  Google Scholar 

  32. Noronha-Blob, L. et al.: J. Med. Chem. 20, 356 (1977)

    Article  PubMed  Google Scholar 

  33. Silverstein, S. C., Steinman, R. M., Cohn, Z. A.: Ann. Rev.Biochem. 46, 669 (1977)

    Article  PubMed  Google Scholar 

  34. Pitha, P. M., Pitha, J., Rowe, W. P.: Virology 63, 568 (1975)

    Article  PubMed  Google Scholar 

  35. Pitha, J., Wilson, S. H., Pitha, P. M.: Biochem. Biophys. Res. Commun. 81, 217 (1978)

    Article  PubMed  Google Scholar 

  36. Paine, P. L., Moore, L. C., Horowitz, S. B.: Nature 254, 109 (1975)

    Google Scholar 

  37. Pitha, J.: Nucleic acids and sulfate and phosphate polyanions, in: Anionic Polymeric Drugs (eds.) Donaruma, L. G., Ottenbrite, R. M., Vogl, O., p. 277, New York, John Wiley & Sons, Inc. 1980

    Google Scholar 

  38. Noronha-Blob, L., Pitha, J.: Biochim. Biophys. Acta 519, 285 (1978)

    PubMed  Google Scholar 

  39. Waschke, K. et al.: Acta Biol. Med. Germ. 38, 739 (1979)

    PubMed  Google Scholar 

  40. Waschke, K. et al.: Arch. Immunol. Ther. Exp. 25, 627 (1977)

    Google Scholar 

  41. Hoffmann, S. et al.: Z. Chem. 17, 61 (1977)

    Google Scholar 

  42. Ryser, H. J. P., Termin, T. E., Barnes, P. R.: J. Cell Physiol. 87, 221 (1976)

    Article  Google Scholar 

  43. Vengris, V. E. et al.: Mol. Pharmacol. 14, 271 (1978)

    PubMed  Google Scholar 

  44. Takemoto, K., Inaki, Y.: Adv. Polym. Sci. 41, 1 (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag

About this paper

Cite this paper

Pitha, J. (1983). Physiological activities of synthetic analogs of polynucleotides. In: Unusual Properties of New Polymers. Advances in Polymer Science, vol 50. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0025247

Download citation

  • DOI: https://doi.org/10.1007/BFb0025247

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-12048-3

  • Online ISBN: 978-3-540-39515-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics