Advertisement

Physiological activities of synthetic analogs of polynucleotides

  • Josef Pitha
Conference paper
Part of the Advances in Polymer Science book series (POLYMER, volume 50)

Abstract

The term polynucleotide is usually used for an analog or a fragment of nucleic acids. As with other important natural compounds, more distant analogs of polynucleotides, were synthesized and studied. In this review polymers which have backbones analogous to those of plastics and substituents analogous to those of polynucleotides are described; further in the text these compounds are named polynucleotide analogs. The interactions of polynucleotide analogs with natural polynucleotides and related proteins are described. These interactions strongly depend on the electric charge of polynucleotide analogs. Electroneutral analogs of polynucleotides interact with natural polynucleotides in a specific manner forming base-pair type complexes. On the other hand, the enzymes of nucleic acid synthesis are not directly bound by these polymers. Because neither polynucleotide analogs nor complexes of these analogs and natural polynucleotides can act as templates in biosynthesis, polynucleotide analogs can be used to block the natural ones and thus, to act as template-specific inhibitors of nucleic acid and protein biosynthesis. This inhibitory action of polynucleotide analogs is strong and specific in cell-free systems, and because they are not biodegradable it may be assumed that the effects of these polymers on cells or animals would also be strong and long-lasting. However, this is not the case; these effects were found to be rather weak and short-lasting. The observed decrease in effectiveness is the result of two factors: a) the ability of polymers to penetrate into the interior of cells is very low and b) by autophagy, the cells are able to capture foreign polymers, that penetrate their cytoplasm, in membrane-coated vesicles and thus, isolate these polymers from the processes occurring in the cell interior.

Keywords

Maleic Anhydride Murine Leukemia Virus Synthetic Analog Nucleic Acid Synthesis Thymine Adenine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7 References

  1. 1.
    Overberger, C. G., Michelotti, F. W.: J. Am. Chem. Soc. 80, 988 (1957)CrossRefGoogle Scholar
  2. 2.
    Hoffmann, S., Witkowski, W.: Wirkungsmechanismen von Herbiciden und Synthetischen Wachstumregulatoren, p. 291, RGW-Symposium Halle 1972, VEB Gustav Fischer 1975Google Scholar
  3. 3.
    Hoffmann, S.: Z. Chem. 19, 241 (1979)Google Scholar
  4. 4.
    Kaye, H.: J. Am. Chem. Soc. 29, 5777 (1970)CrossRefGoogle Scholar
  5. 5.
    Pitha, J., Pitha, P. M., Ts'o, P. O. P.: Biochim. Biophys. Acta 204, 39 (1970)PubMedGoogle Scholar
  6. 6.
    Pitha, P. M., Pitha, J.: Biopolymers 9, 965 (1970)CrossRefPubMedGoogle Scholar
  7. 7.
    Pitha, J., Pitha, P. M., Stuart, E.: Biochemistry 10, 4595 (1971)CrossRefPubMedGoogle Scholar
  8. 8.
    Pitha, P. M., Michelson, A. M.: Biochim. Biophys. Acta 204, 381 (1970)PubMedGoogle Scholar
  9. 9.
    Pitha, J., Pitha, P. M.: Science 172, 1146 (1971)PubMedGoogle Scholar
  10. 10.
    Reynolds, F. et al.: Biochemistry 11, 3261 (1972)CrossRefPubMedGoogle Scholar
  11. 11.
    Pitha, J.: Anal. Biochem. 65, 422 (1975)CrossRefPubMedGoogle Scholar
  12. 12.
    Chou, H. J., Froehlich, J. P., Pitha, J.: Nucl. Acids Res. 5, 691 (1978)PubMedGoogle Scholar
  13. 13.
    Boguslawski, S., Olson, P. E., Mertes, M. P.: Biochemistry 15, 3536 (1976)CrossRefPubMedGoogle Scholar
  14. 14.
    Olson, P. E. et al.: Biochemistry 14, 4892 (1975)CrossRefPubMedGoogle Scholar
  15. 15.
    Maggiora, L., Boguslawski, S., Mertes, M. P.: J. Med. Chem. 20, 1283 (1977)CrossRefPubMedGoogle Scholar
  16. 16.
    Cowling, G. J., Jones, A. S., Walker, R. T.: Biochim. Biophys. Acta 254, 452 (1971)PubMedGoogle Scholar
  17. 17.
    Pitha, J., Wilson, S. H.: Nucl. Acids Res. 3, 825 (1976)PubMedGoogle Scholar
  18. 18.
    Hoffmann, S. et al.: Z. Chem. 16, 322 (1976)Google Scholar
  19. 19.
    Reynolds, F. H. et al.: Mol. Pharmacol. 11, 708 (1975)PubMedGoogle Scholar
  20. 20.
    Pitha, P. M. et al.: Proc. Natl. Acad. Sci. USA 70, 1204 (1973)PubMedGoogle Scholar
  21. 21.
    Pitha, J.: Cancer Res. 36, 1273 (1976)PubMedGoogle Scholar
  22. 22.
    Hoffmann, S. et al.: Z. Chem. 16, 402 (1976)Google Scholar
  23. 23.
    Pitha, P. M., Pitha, J.: Pharmac. Ther. A 2, 247 (1978)Google Scholar
  24. 24.
    Papas, T. S., Pry, T. W., Chrigos, M. A.: Proc. Natl. Acad. Sci. USA 71, 367 (1974)PubMedGoogle Scholar
  25. 25.
    Jacoby, W. B., Pastan, I. H.: Meth. Enzymol. 58 (1979)Google Scholar
  26. 26.
    Schneider, E. L., Mitsui, Y.: Proc. Natl. Acad. Sci. USA 73, 3584 (1976)PubMedGoogle Scholar
  27. 27.
    Baer, H. P., Drummond, G. I. (eds.): Physiological and Regulatory Functions of Adenosine and Adenine Nucleotides, Raven Press, New York 1979Google Scholar
  28. 28.
    Daly, J. W., Bruns, R. F., Snyder, S. H.: Life Sci. 28, 2083 (1981)CrossRefPubMedGoogle Scholar
  29. 29.
    Olsson, R. A., Davis, C. C., Khoun, E. M.: Life Sci. 21, 1343 (1977)CrossRefPubMedGoogle Scholar
  30. 30.
    Ishii, K., Green, H.: J. Cell. Sci. 13, 429 (1973)PubMedGoogle Scholar
  31. 31.
    Thomas, G. A., Varney, N. F., Burton, K.: Biochem. J. 120, 117 (1970)PubMedGoogle Scholar
  32. 32.
    Noronha-Blob, L. et al.: J. Med. Chem. 20, 356 (1977)CrossRefPubMedGoogle Scholar
  33. 33.
    Silverstein, S. C., Steinman, R. M., Cohn, Z. A.: Ann. Rev.Biochem. 46, 669 (1977)CrossRefPubMedGoogle Scholar
  34. 34.
    Pitha, P. M., Pitha, J., Rowe, W. P.: Virology 63, 568 (1975)CrossRefPubMedGoogle Scholar
  35. 35.
    Pitha, J., Wilson, S. H., Pitha, P. M.: Biochem. Biophys. Res. Commun. 81, 217 (1978)CrossRefPubMedGoogle Scholar
  36. 36.
    Paine, P. L., Moore, L. C., Horowitz, S. B.: Nature 254, 109 (1975)Google Scholar
  37. 37.
    Pitha, J.: Nucleic acids and sulfate and phosphate polyanions, in: Anionic Polymeric Drugs (eds.) Donaruma, L. G., Ottenbrite, R. M., Vogl, O., p. 277, New York, John Wiley & Sons, Inc. 1980Google Scholar
  38. 38.
    Noronha-Blob, L., Pitha, J.: Biochim. Biophys. Acta 519, 285 (1978)PubMedGoogle Scholar
  39. 39.
    Waschke, K. et al.: Acta Biol. Med. Germ. 38, 739 (1979)PubMedGoogle Scholar
  40. 40.
    Waschke, K. et al.: Arch. Immunol. Ther. Exp. 25, 627 (1977)Google Scholar
  41. 41.
    Hoffmann, S. et al.: Z. Chem. 17, 61 (1977)Google Scholar
  42. 42.
    Ryser, H. J. P., Termin, T. E., Barnes, P. R.: J. Cell Physiol. 87, 221 (1976)CrossRefGoogle Scholar
  43. 43.
    Vengris, V. E. et al.: Mol. Pharmacol. 14, 271 (1978)PubMedGoogle Scholar
  44. 44.
    Takemoto, K., Inaki, Y.: Adv. Polym. Sci. 41, 1 (1981)Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Josef Pitha
    • 1
  1. 1.Macromolecular Chemistry SectionNational Institute on Aging-GRC, National Institutes of HealthBaltimoreUSA

Personalised recommendations