Skip to main content

Image compression by multilevel polynomial interpolation and wavelet texture coding

  • 5 Signal Processing
  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1333))

Abstract

This contribution introduces a new method for lossy image compression which exhibits special advantages when robust compression behavior in the vicinity of structurally important regions is needed. Comparing to other general purpose compression techniques, our approach preserves important image characteristics more precisely while simultaneously proving less susceptible to the introduction of annoying artifacts. In well structured regions, the method is based on multilevel polynomial image interpolation. Aiming at an average/detail decomposition of the input image, polynomial (spline) interpolation on an appropriately chosen irregular grid enables us to pack more information into the average component and, therefore, substantially reduces the need for storing additional data pertaining to the detail component. For handling highly unstructured regions, we use wavelet texture coding whereby an interpolating scaling function, preferably in a biorthogonal setup, is essential.

This work was supported in part by the Austrian Science Foundation (FWF) under grant S7001.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Acheroy and S. Grandjean. METEOSAT image compression using the wavelet transform. Technical report, Royal Military Academy, Av de la Renaissance 30, B-1040 Brussels, Belgium, March 1994.

    Google Scholar 

  2. M. Acheroy, J.M. Mangen, and Y. Buhler. Progressive wavelet algorithm versus JPEG for the compression of METEOSAT data. Technical report, Royal Military Academy, Av de la Renaissance 30, B-1040 Brussels, Belgium, 1995.

    Google Scholar 

  3. Jonathan N. Bradley, Christopher M. Brislawn, and Tom Hopper. The FBI Wavelet/Scalar Quantization Fingerprint Image Compression Standard. Technical Report LA-UR-94-1409, Los Alamos National Laboratory, Los Alamos, NM 87545, 1994.

    Google Scholar 

  4. S. Carlsson. Sketch based coding of gray level images. Signal Processing North-Holland, 15(1):57–83, 1988.

    Article  Google Scholar 

  5. J.M. Combes, A. Grossmann, and Ph. Tchamitchian, editors. Wavelets: Time-Frequency Methods and Pase Space, Inverse problems and theoretical imaging. Springer Verlag, New York, 1989.

    Google Scholar 

  6. I. Daubechies, A. Grossmann, and Y. Meyer. Painless nonorthogonal expansions. J. Math. Phys., 27(5):1271–1283, 1986.

    Article  Google Scholar 

  7. G. Deslauriers and S. Dubuc. Symmetric iterative interpolation processes. Constr. Approx., 5(1):49–68, 1989.

    Article  Google Scholar 

  8. D.L. Donoho. Interpolating wavelet transforms. Technical report, Department of Statistics, Stanford University, 1992.

    Google Scholar 

  9. Thomas Lane et. al. USAGE instructions for the ICG's JPEG software. Independent JPEG Group, jpeg-info@uunet.uu.net, 1995.

    Google Scholar 

  10. Yuval Fisher, editor. Fractal Image Compression: Theory and Application. Springer-Verlag, New York, 1995.

    Google Scholar 

  11. Jill Goldschneider. Vector Quantization Software Documentation. Univ. of Washington, Dept. of Comp.Sci. & Eng., Seattle, USA, 1994.

    Google Scholar 

  12. A. Grossmann and J. Morlet. Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM J. Math. Anal., 15(4):723–736, 1984.

    Article  Google Scholar 

  13. M. Kunt, A. Ikonomopoulos, and M. Kocher. Second generation image coding techniques. Proc. IEEE, 73(4):549–574, 1985.

    Google Scholar 

  14. S.G. Mallat. Multifrequency channel decompositions of images and wavelet models. IEEE Trans. Acous. Speech Signal Process., 37(12):2091–2110, 1989.

    Article  Google Scholar 

  15. S.G. Mallat. Multiresolution approximations and wavelet orthonormal bases of L 2(R). Trans. Amer. Math. Soc, 315(1):69–87, 1989.

    Google Scholar 

  16. Y. Meyer. Ondelettes et Opérateurs. Hermann, Paris, 1990.

    Google Scholar 

  17. A.N. Netravali and J.O. Limb. Picture coding: a review. Proc. IEEE, 68(3):366–406, 1980.

    Google Scholar 

  18. T.Q. Nguyen and P.P. Vaidyanathan. Two-channel perfect-reconstruction FIR QMF structures which yield linear-phase analysis and synthesis filters. IEEE Trans. Acoust. Speech Signal Process., 37:676–690, 1989.

    Article  Google Scholar 

  19. P. Maaß and H.G. Stark. Wavelets and digital image processing. In Surveys on Mathematics for Industry, volume 4, pages 195–235. Springer-Verlag, 1994.

    Google Scholar 

  20. L.M. Reissell. Curves and surfaces. In University of British Columbia A. Fournier, editor, SIGGRAPH'95 Course Notes: Wavelets and their Applications in Computer Graphics, page 123ff. 1995.

    Google Scholar 

  21. J. Scharinger, F. Pichler, H.G. Feichtinger, and F. Leberl. Comparison of lossy image compression techniques with respect to their impact on edge detection. In Applications of Digital Image Processing XIX, SPIE Proceedings Volume 2847, pages 479–490, November 1996.

    Google Scholar 

  22. J.M. Shapiro. Embedded image coding using zerotrees of wavelet coefficients. IEEE Trans. Signal Processing, 41(12):3445–3462, 1993.

    Article  Google Scholar 

  23. Eero P. Simoncelli. EPIC. Vision Science Group, MIT Media Laboratory, 20 Ames Street, Cambridge, Massachusetts 02139, 1989.

    Google Scholar 

  24. M.J.T. Smith and T.P. Barnwell. Exact reconstruction techniques for tree-structured subband coders. IEEE Trans. Acoust. Speech Signal Process., 34(3):434–441, 1986.

    Article  Google Scholar 

  25. W. Sweldens. The lifting scheme: A custom-design construction of biorthogonal wavelets. Technical report, AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974, USA, 1994.

    Google Scholar 

  26. M. Vetterli. Filter banks allowing perfect reconstruction. Signal Process., 10:219–244, 1986.

    Article  MathSciNet  Google Scholar 

  27. Richard L. White. High-performance compression of astronomical images. Technical report, Space Telescope Science Institute, 199X.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Franz Pichler Roberto Moreno-Díaz

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Scharinger, J. (1997). Image compression by multilevel polynomial interpolation and wavelet texture coding. In: Pichler, F., Moreno-Díaz, R. (eds) Computer Aided Systems Theory — EUROCAST'97. EUROCAST 1997. Lecture Notes in Computer Science, vol 1333. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0025064

Download citation

  • DOI: https://doi.org/10.1007/BFb0025064

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63811-7

  • Online ISBN: 978-3-540-69651-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics