Digital lighting functions

  • R. Ayala
  • E. Domínguez
  • A. R. Francés
  • A. Quintero
Topology
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1347)

Abstract

In this paper a notion of lighting function is introduced as an axiomatized formalization of the “face membership rules” suggested by Kovalevsky. These functions are defined in the context of the framework for digital topology previously developed by the authors. This enlarged framework provides the (α, β)-connectedness (α, β ε {6,18, 26}) defined on ℤ3 within the graph-based approach to digital topology. Furthermore, the Kong-Roscoe (α, β)-surfaces, with (α, β) ≠ (6, 6), (18, 6), are also found as particular cases of a more general notion of digital surface.

Keywords

Lighting function digital surface pixel connectivity digital topology. 

References

  1. 1.
    R. Ayala, E. Dominguez, A.R. Francés, A.Quintero, J. Rubio. On surfaces in digital topology. Proc. of the 5th Workshop on Discrete Geometry for Computer Imagery DGCI'95. (1995) 271–276.Google Scholar
  2. 2.
    R. Ayala, E. Domínguez, A.R. Francés, A.Quintero. Determining the components of the complement of a digital (n-1)-manifold in ℤn. Proc. of the 6th Int. Workshop on Discrete Geometry for Computer Imagery DGCI'96. Lectures Notes in Computer Science. 1176 (1996) 163–176.Google Scholar
  3. 3.
    E. Domínguez, A.R. Francés, A. Márquez. A Framework for Digital Topology. Proc. of the IEEE Int. Conf. on Systems, Man, and Cybernetics. 2 (1993) 65–70.Google Scholar
  4. 4.
    J. Françon. On recent trends in discrete geometry in computer science. Proc. of the 6th Int. Workshop on Discrete Geometry for Computer Imagery DGCI'96. Lectures Notes in Computer Science. 1176 (1996) 163–176.Google Scholar
  5. 5.
    E. Khalimsky, R. Kopperman, P.R. Meyer. Computer Graphics and connected topologies on finite ordered sets. Topology and its Applications. 36 (1990) 1–17.Google Scholar
  6. 6.
    T.Y. Kong, A.W. Roscoe. Continuous Analogs of Axiomatized Digital Surfaces. Computer Vision, Graphics, and Image Processing. 29 (1985) 60–86.Google Scholar
  7. 7.
    T.Y. Kong, A. Rosenfeld. Digital Topology: Introduction and Survey. Computer Vision, Graphics, and Image Processing. 48 (1989) 357–393.Google Scholar
  8. 8.
    V.A. Kovalevsky. Finite topology as applied to image analysis. Computer Vision, Graphics, and Image Processing. 46 (1989) 141–161.Google Scholar
  9. 9.
    R. Malgouyres. A definition of surfaces of ℤ3. Proc. of the 3th Workshop on Discrete Geometry for Computer Imagery DGCI'93. (1993) 23–34.Google Scholar
  10. 10.
    G. Bertrand, R. Malgouyres. Some topological properties of Discrete Surfaces. Proc. of the 6th Int. Workshop on Discrete Geometry for Computer Imagery DGCI'96. Lectures Notes in Computer Science. 1176 (1996) 325–336.Google Scholar
  11. 11.
    D.G. Morgenthaler, A. Rosenfeld. Surfaces in Three-Dimensional Digital Images. Information and Control. 51 (1981) 227–247.Google Scholar
  12. 12.
    C.P. Rourke, B.J. Sanderson. Introduction to Piecewise linear topology. Ergebnisse der Math., 69. Springer, 1972.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • R. Ayala
    • 1
  • E. Domínguez
    • 2
  • A. R. Francés
    • 2
  • A. Quintero
    • 1
  1. 1.Dpt. de Algebra, Computación, Geometría y Topología, Facultad de MatemáticasUniversidad de SevillaSevillaSpain
  2. 2.Dpt. de Informática e Ingeniería de Sistemas, Facultad de CienciasUniversidad de ZaragozaZaragozaSpain

Personalised recommendations