Skip to main content

Microscopic and molecular fundamentals of crazing

  • Conference paper
  • First Online:
Crazing in Polymers

Part of the book series: Advances in Polymer Science ((POLYMER,volume 52-53))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

A′, mc :

prefactor and exponent of K in crack growth equation

\(\overline D\) :

average craze fibril diameter \(\overline D\)=〈D2〉/〈D〉

〈D〉:

mean fibril diameter

〈D2〉:

mean square fibril diameter

D0 :

average fibril spacing as well as average fibril diameter before deformation (diameter of the “phantom” fibril cylinder)

D0*, ∇σ0*:

fibril spacing of fastest growing of craze interface and gradient of hydrostatic stress corresponding to this spacing

E*:

an effective Young's modulus of the polymer which equals Young's modulus for plane stress and E/(1−ν2) for plane strain

G, G 0N :

shear modulus, shear modulus level of the rubbery plateau

GIc :

critical strain energy release rate of crack (fracture toughness)

K:

stress intensity factor for crack

M:

axis of molecular orientation

M0 :

molecular weight of stiff units along chain

Mc :

critical molecular weight below which crazes do not form

Me :

entanglement molecular weight

Mn, Mn′:

number average molecular weights of chains in the glass before crazing and in the craze fibrils respectively

Mw′:

weight average molecular weight of chains in the craze fibrils

NA :

Avogadro's number

P:

probability that there is at least one entangled chain in each entanglement length along a fibril

Q:

SAXS invarient

R:

radius of curvature at craze front

R:

universal gas constant

S, St :

tensile stress on craze surface and at the craze tip respectively averaged over several fibrils

ΔS(x):

self stress of craze necessary to produce its measured displacement profile w(x)

TA :

absolute temperature

T(x):

craze thickness profile

Tg :

glass transition temperature

U*:

activation energy for chain scission

U:

energy needed to break a single primary polymer chain bond

V:

crack growth velocity

χ:

volume fraction of polymer in a blend

Y:

tensile yield stress

Z:

number of entanglement transfer lengths along a fibril

a:

half length of craze (or of crack plus craze)

ai :

initial radius of a penny shaped crack

c:

crack half length

d:

root mean square end-to-end distance of a chain of molecular weight Me, entanglement mesh size

f:

force on a single entangled chain in a fibril

i(s):

scattered X-ray intensity

k′:

Porod's law constant from high angle tail of SAXS intensity

k0 :

rate constant prefactor

kb :

rate of bond scission

l:

entanglement transfer length along fibril

l0 :

average projected length of stiff units along chain

lact :

activation distance

le :

chain contour length between entanglements

n:

non Newtonian flow law exponent

nc :

refractive index of craze

p:

probability that at least one entangled chain is left umbroken in a given entanglement transfer length

\(\bar p\)(ζ), ζ:

Fourier transform of craze selfstress and the transform variable (spatial frequency) ζ

q:

the ratio of entangled chain density before to that after crazing (=ν′EE)

r:

radius of curvature of steady state finger at craze tip

rd :

chain disentanglement rate

s:

magnitude of the X-ray scattering vector

s0 :

deviatoric stress

v:

velocity of craze — bulk polymer interface in craze thickening

w(x):

displacement profile of craze interfaces

x, z:

coordinates in craze plane normal to and parallel to the craze front

2θ:

X-ray scattering angle

Λ:

wave length of sinusoidal perturbation of craze front

Λc :

fastest growing wave length of craze front perturbation

Λm :

minimum wavelength of sinusoidal craze front perturbation that can grow

Λs :

fastest growing spacing of steady state finger structure at craze tip

Φcraze, Φfilm, Φhole :

optical density on TEM micrograph of craze, solid film and hole through film

Γ:

energy to create new surface at craze tip or craze-bulk interface including an energy of primary chain rupture

α:

proportionality constant between finger spacing and finger radius of curvature (r=αΛs)

α(x):

linear dislocation density of continuously distributed dislocations of Burger's vector b necessary to give the same displacement profile as the craze

γ:

van der Waal's surface energy

\(\dot \varepsilon\) :

equivalent tensile strain rate

\(\dot \varepsilon\)F, σF:

material parameter in non-Newtonian flow law \(\dot \varepsilon\)=\(\dot \varepsilon\) F(σ/σF)n

εc :

critical uniaxial strain for crazing

ζ:

amplitude of sinusoidal perturbation of craze front

λ:

extension ratio of craze fibrils relative to undeformed polymer glass

λDZ :

extension ratio of shear deformation zone

max), (λmax) :

maximum extension ratio of a single entangled chain parallel and prependicular to the preorientation direction

λmax :

maximum extension ratio of a single entangled chain (=le/d)

λnet :

maximum extension ratio of entangled chain network

λp :

extension ratio achieved in uniaxial preorientation above Tg

λx :

X-ray wavelength

λ, λ :

extension ratio measured in craze fibrils grown by applying tensile stress parallel, and perpendicular, to the axis of molecular orientation M

ν:

Poisson's ratio

νE :

density of chains between entanglement junction points

ν′E :

density of chains between entanglement junction points after geometrically necessary entanglement loss

ν sE , ν dE :

density of entangled chains lost by scission or disentanglement respectively when forming a fibril surface

ϱ:

polymer density

β, β*:

coefficient of proportionality between average hydrostatic stress (σ0) and tensile stress S or St at craze interface or craze tip respectively (i.e. (σ0)m=βS; (σ0)m=β*St)

σ:

equivalent tensile stress

σ0 :

hydrostatic stress (negative pressure)

δσ0 :

increment of hydrostatic stress

∇σ0, s*:

gradient of hydrostatic stress and its sign

0)m :

average hydrostatic stress ahead of craze tip or craze interface

0)s :

hydrostatic stress at the surface of the void “ceiling” between fibrils at craze interface

0)t :

hydrostatic stress at craze void finger tip

σD :

lower yield stress

σf :

true tensile stress in the craze fibrils

σij :

components of stress tensor

σ :

tensile stress normal to the craze at large distances from the craze plane

10 References

  1. Kramer, E. J.: Environmental Cracking of Polymers, Chap. 3 in Developments in Polymer Fracture (ed. E. H. Andrews), Applied Sci. Publishers, Barking, UK, 1979 p. 55

    Google Scholar 

  2. Kambour, R. P.: J. Polymer Sci. Macromol. Rev. 7, 1 (1973)

    Google Scholar 

  3. Rabinowitz, S., Beardmore, P.: CRC Reviews in Macromol. Sci. 1, 1 (1972)

    Google Scholar 

  4. Gent, A. N.: The Mechanics of Fracture, AMD, Vol. 19 (ed. F. Erdogon), New York, ASME, 1976 p. 55

    Google Scholar 

  5. Maxwell, B., Rahm, L. F.: J. Soc. of Plastics Eng. 6, 473 (1965)

    Google Scholar 

  6. Argon, A. S., Hannoosh, J. G.: Phil. Mag. 36, 1195 (1977)

    Google Scholar 

  7. Sternstein, S. S., Myers, F. A.: J. Macromol. Sci.-Phys. B8, 557 (1973)

    Google Scholar 

  8. Oxborough, R. J., Bowden, P. B.: Phil. Mag., 28, 547 (1973)

    Google Scholar 

  9. Matsushige, K., Radcliffe, S. V., Baer, E.: J. Mat. Sci. 10, 833 (1973)

    Google Scholar 

  10. Matsushige, K., Baer, E., Radcliffe, S. V.: J. Macromol. Sci.-Phys. B11, 565 (1975)

    Google Scholar 

  11. Kawagoe, M., Kitagawa, M.: J. Polymer Sci.-Polymer Phys. 19, 1423 (1981)

    Google Scholar 

  12. Duckett, R. A., Kovacs, A. private communication

    Google Scholar 

  13. Wellinghoff, S., Baer, E.: J. Macromol. Sci.-Phys. B11, 367 (1975)

    Google Scholar 

  14. Argon, A. S.: Pure Appl. Chem. 43, 247 (1975)

    Google Scholar 

  15. Gent, A. N.: J. Materials Sci. 5, 925 (1970)

    Google Scholar 

  16. Dettenmaier, M.: Chapter 2 of this volume

    Google Scholar 

  17. Donald, A. M., Kramer, E. J.: J. Applied Polymer Sci. 27, 3729 (1982)

    Google Scholar 

  18. Ricco, T., Pavan, A., Danusso, F.: Polymer Eng'g. & Sci. 18, 774 (1978)

    Google Scholar 

  19. Broutman, L. J., Panizza, G.: Int. J. Polym. Materials 1, 95 (1971)

    Google Scholar 

  20. Sternstein, S. S., Onchin, L., Silverman, A.: Appl. Polymer Symp. 7, 175 (1968)

    Google Scholar 

  21. McClintock, F. A., Argon, A. S.: Mechanical Behavior of Materials, Addison-Wesley, Reading, MA, 1966 p. 285

    Google Scholar 

  22. Beardmore, P., Rabinowitz, S.: J. Materials Sci. 10, 1763 (1975)

    Google Scholar 

  23. Kitagawa, M.: J. Polymer Sci.-Polymer Phys. 14, 2095 (1976)

    Google Scholar 

  24. Argon, A. S., Salama, M. M.: Phil. Mag. 36, 1217 (1977)

    Google Scholar 

  25. Lauterwasser, B. D., Kramer, E. J.: Phil. Mag. A 39, 469 (1979)

    Google Scholar 

  26. Taylor, G. I.: Proc. Roy. Soc. A 201, 192 (1950)

    Google Scholar 

  27. Saffman, P. G., Taylor, G. I.: Proc. Roy. Soc. A 245, 312 (1958)

    Google Scholar 

  28. Fields, R. J., Ashby, M. F.: Phil. Mag. 33, 33 (1976)

    Google Scholar 

  29. Argon, A. S., Salama, M. M.: Materials Science & Eng'rg. 23, 219 (1977)

    Google Scholar 

  30. Donald, A. M., Kramer, E. J.: Phil. Mag. A 43, 857 (1981)

    Google Scholar 

  31. Donald, A. M.: unpublished

    Google Scholar 

  32. Brown, H. R., Kramer, E. J.: J. Macromol. Sci.-Phys. B19, 487 (1981)

    Google Scholar 

  33. Paredes, E., Fischer, E. W.: Makromol. Chem. 180, 2707 (1979)

    Google Scholar 

  34. Bauwens, J. C., Bauwens-Crowet, C., Homès, G.: J. Polymer Sci. A-2, 7, 1745 (1969)

    Google Scholar 

  35. Brady, T. E., Yeh, G. S. Y.: J. Appl. Phys. 42, 4622 (1971)

    Google Scholar 

  36. Morgan, G. P., Ward, I. M.: Polymer 18, 87 (1977)

    Google Scholar 

  37. Döll, W., Schinker, M. G., Könczöl, L.: Int. J. Fracture, 15, R 145 (1979)

    Google Scholar 

  38. Bucknall, C. B.: Toughened Plastics, Applied Science, London, 1977

    Google Scholar 

  39. Verhuelpen-Heymans, N., Bauwens, J. C.: J. Materials Sci. 11, 7 (1976)

    Google Scholar 

  40. Donald, A. M., Kramer, E. J., Bubeck, R. A.: J. Polymer Sci.-Polymer Phys. 20, 1129 (1982)

    Google Scholar 

  41. Verhuelpen-Heymans, N.: Polymer 20, 356 (1979)

    Google Scholar 

  42. Trent, J. S., Palley, I. Baer, E.: J. Materials Sci., 16, 331 (1981)

    Google Scholar 

  43. Donald, A. M., Kramer, E. J.: Polymer 23, 457 (1982)

    Google Scholar 

  44. Wang, W.-C. V., Kramer, E. J.: Polymer 23, 1667 (1982)

    Google Scholar 

  45. Sneddon, I. N.: Fourier Transforms, McGraw-Hill, New York, 1951, pp. 395–430

    Google Scholar 

  46. Bilby, B. A., Eshelby, J. D.: Dislocations and the Theory of Fracture, Chap. 2, in Fracture, Vol. 1 (ed. H. Liebowitz), Academic Press, New York, 1972. p. 111

    Google Scholar 

  47. Wang, W.-C. V., Kramer, E. J.: J. Materials Sci. 17, 2013 (1982)

    Google Scholar 

  48. Farrar, N. R., Kramer, E. J.: Polymer, 22, 691 (1981)

    Google Scholar 

  49. Hirth, J. P., Lothe, J.: Theory of Dislocations, McGraw Hill, New York, 1968 p. 398

    Google Scholar 

  50. Mills, N. J.: J. Materials Sci. 16, 1317 (1981)

    Google Scholar 

  51. Takahashi, K., Hyodo, S.: J. Macromol. Sci.-Phys. B19, 695 (1981)

    Google Scholar 

  52. Lauterwasser, B. D.: Ph. D. Thesis, Cornell Univ., 1979

    Google Scholar 

  53. Bevan, L.: J. Polymer Sci.-Polymer Phys. 19, 1789 (1981)

    Google Scholar 

  54. Donald, A. M., Kramer, E. J.: MSC Rep. 4854, Polymer, in press.

    Google Scholar 

  55. Chudnovsky, A., Baer, E., Palley, I.: J. Materials Sci. 16, 35 (1981).

    Google Scholar 

  56. Dugdale, D. S.: J. Mechanics of Solids 8, 100 (1960)

    Google Scholar 

  57. Goodier, J. N., Field, F. A.: Proc. Intern. Conf. Fracture of Solids (ed. D. C. Drucker, J. J. Gilman) Met. Soc. Conf., Vol. 20, Interscience, New York, 1963, p. 103

    Google Scholar 

  58. Behan, P., Bevis, M., Hull, D.: J. Materials Sci. 8, 162 (1972)

    Google Scholar 

  59. Behan, P., Bevis, M., Hull, D.: Phil. Mag. 24, 1267 (1971)

    Google Scholar 

  60. Behan, P., Bevis, M., Hull, D.: Proc. Roy. Soc. Lond. A 343I, 525 (1975)

    Google Scholar 

  61. LeGrand, D. G., Kambour, R. P., Haaf, W. R.: J. Polymer Sci., A2 10, 1565 (1972)

    Google Scholar 

  62. Steger, T. R., Nielsen, L. E.: J. Polymer Sci.-Polymer Phys. 16, 613 (1978)

    Google Scholar 

  63. Porod, G.: Kolloid Z. 124, 83 (1951); ibid 125, 51, 109 (1952)

    Google Scholar 

  64. Paredes, E., Fischer, E. W.: J. Polymer Sci.-Polymer Phys. 20, 929 (1982)

    Google Scholar 

  65. Kambour, R. P.: Nature 195, 1299 (1962)

    Google Scholar 

  66. Kambour, R. P.: Polymer 5, 143 (1964)

    Google Scholar 

  67. Kambour, R. P.: J. Polymer Sci. A 2, 4159 (1964); ibid 2, 4165 (1964); ibid 4, 349 (1966)

    Google Scholar 

  68. Brown, H. R.: J. Materials Sci., 14, 237 (1979)

    Google Scholar 

  69. Kramer, E. J.: MSC Rep. 4498, to appear in Developments in Instrumental and Physical Characterization of Polymers, Amer. Chem. Soc., — Adv. Chem. Ser.

    Google Scholar 

  70. Brown, H. R.: J. Polymer Sci.-Polymer Phys. 17, 1431 (1979)

    Google Scholar 

  71. Biangardi, H. J.: Makromol. Chem. 183, 1785 (1982)

    Google Scholar 

  72. Brown, H. R.: J. Polymer Sci.-Polymer Phys. 17, 1417 (1979)

    Google Scholar 

  73. Brown, H. R.: Ultramicroscopy, 7, 263 (1982)

    Google Scholar 

  74. Brown, H. R.: J. Polymer Sci.-Polymer Physics, in press.

    Google Scholar 

  75. Chan, T., Donald, A. M., Kramer, E. J.: J. Materials Sci. 16, 676 (1981)

    Google Scholar 

  76. Donald, A. M., Chan, T., Kramer, E. J., ibid., 16, 669 (1981)

    Google Scholar 

  77. Porter, R. S., Johnson, J. F.: Chem. Rev. 66, 1 (1966)

    Google Scholar 

  78. Graessley, W. W.: Adv. Polymer Sci. 16, 1 (1974)

    Google Scholar 

  79. deGennes, P. G.: J. Chem. Phys. 55, 572 (1971)

    Google Scholar 

  80. Doi, M., Edwards, S. F.: J. Chem. Soc. Faraday Trans. 74, 1789 (1978)

    Google Scholar 

  81. Graessley, W. W.: J. Polymer Sci.-Polymer Phys. 18, 27 (1980)

    Google Scholar 

  82. Wignall, G. D., Ballard, D. G. H., Schelten, J.: J. Macromol. Sci.-Phys. B12, 75 (1976)

    Google Scholar 

  83. Kirste, R. G., Kruse, W. A., Ibel, K.: Polymer 16, 120 (1975)

    Google Scholar 

  84. Kurata, M., Tsunashima, Y., Iwama, M., Kamada, K. in Polymer Handbook (J. Brandrup, E. Immergut, eds.), Wiley, New York, 1975, Chap. IV-4

    Google Scholar 

  85. Müller, F. H., quoted in P. H. Hermans: The Physics and Chemistry of Cellulose Fibers, Elsevier, New York, 1949, p. 418

    Google Scholar 

  86. Haward, R. N.: The Strength of Plastics and Glass, Clever-Hunel, London, 1949, Chap. IV

    Google Scholar 

  87. Pinnock, P. R., Ward, I. M.: Trans. Faraday Soc. 62, 1308 (1966)

    Google Scholar 

  88. Haward, R. N.: Chap. VI in The Physics of Glassy Polymers (ed. R. N. Haward), Applied Sci., Barking, UK, 1973

    Google Scholar 

  89. Raha, S., Bowden, P. B.: Polymer 13, 174 (1972)

    Google Scholar 

  90. Kahar, N., Duckett, R. A., Ward, I. M.: Polymer, 17, 136 (1978)

    Google Scholar 

  91. Duckett, R. A.: The Natural Draw Ratio, to appear in Proc. Internat. Spring School on Plastic Deformation of Amorphous and Semicrystalline Materials, Les Houches, France, April 19–29, 1982 (ed. B. Escaig, C. G'Sell), (Les Editions de Physique, Les Ulis, 1983) p. 253

    Google Scholar 

  92. Gent, A. N., Thomas, A. G.: J. Polymer Sci. A 2 10, 571 (1972)

    Google Scholar 

  93. Brady, T. E., Yeh, G. S. Y.: J. Materials Sci. 8, 1083 (1973)

    Google Scholar 

  94. Wellinghoff, S. Baer, E.: J. Macromol. Sci.-Phys. B11, 367 (1975)

    Google Scholar 

  95. Lainchbury, D. L. G., Bevis, M.: J. Materials Sci. 11, 2222 (1976)

    Google Scholar 

  96. Kusy, R. P., Turner, D. T.: Polymer, 15, 394 (1974)

    Google Scholar 

  97. Fellers, J. Kee, B. F.: J. Appl. Polymer Sci. 18, 2355 (1974)

    Google Scholar 

  98. Robertson, R. E. in ACS Symp. Toughness and Brittleness of Plastics, Sept. 1974 (R. D. Demin, A. O. Crugnola, Eds.), Adv. Chem. Ser. 154, Amer. Chem. Soc., Washington, 1976 p. 89

    Google Scholar 

  99. Kramer, E. J.: J. Materials Sci. 14, 1381 (1978)

    Google Scholar 

  100. Donald, A. M., Kramer, E. J.: J. Polymer Sci.-Polymer Phys. 20, 899 (1982)

    Google Scholar 

  101. Donald, A. M., Kramer, E. J.: J. Materials Sci. 16, 2967 (1981)

    Google Scholar 

  102. Donald, A. M., Kramer, E. J.: Polymer 23, 461 (1982)

    Google Scholar 

  103. Donald, A. M., Kramer, E. J.: J. Materials Sci. 17, 1871 (1982)

    Google Scholar 

  104. Donald, A. M., Kramer, E. J.: Polymer 23, 1183 (1982)

    Google Scholar 

  105. Donald, A. M., Kramer. E. J.: J. Materials Sci., 16, 2977 (1981)

    Google Scholar 

  106. Argon, A. S.: Phil. Mag. 28, 839 (1973)

    Google Scholar 

  107. Argon, A. S., Bessonov, M. I.: Phil. Mag. 35, 917 (1977)

    Google Scholar 

  108. Argon, A. S., Bessonov, M. I.: Polymer Eng. and Sci. 17, 174 (1977)

    Google Scholar 

  109. Argon, A. S., Chap. 3 Inelastic Deformation and Fracture in Oxide, Metallic and Polymeric Glasses, in Glass: Science and Technology (ed. D. R. Uhlmann), Academic Press, NY, 1980, p. 79

    Google Scholar 

  110. Allen, G., Morley, D. C. W., Williams, T.: J. Materials Sci. 8, 1449 (1973)

    Google Scholar 

  111. Adam, G. A., Cross, A., Haward, R. N.: ibid. 10, 1582 (1975)

    Google Scholar 

  112. Pitman, G. H., Ward, I. M., Duckett, R. A.: ibid. 13, 2092 (1978)

    Google Scholar 

  113. Verhuelpen-Heymans, N.: ibid. 11, 1003 (1976)

    Google Scholar 

  114. Brown, H. R.: ibid. 17, 469 (1982)

    Google Scholar 

  115. Prest Jr., W. M., Porter, R. S.: J. Polymer Sci.-Polymer Phys. 10, 1639 (1972)

    Google Scholar 

  116. deGennes, P. G.: Scaling Concepts in Polymer Physics, Cornell University Press, Ithaca, 1979

    Google Scholar 

  117. Yang, A., Kramer, E. J., unpublished

    Google Scholar 

  118. Monnerie, L.: MACRO 82, IUPAC, Amherst MS, July 15, 1982, to be published

    Google Scholar 

  119. Farrar, N. R., Kramer, E. J.: Bull. Amer. Phys. Soc. 26, 463 (1981)

    Google Scholar 

  120. Henkee, C., Kramer, E. J.: unpublished

    Google Scholar 

  121. Kita, J., Kramer, E. J.: unpublished

    Google Scholar 

  122. Lake, G. J., Thomas, A. G.: Proc. Roy. Soc. London Ser. A 300, 108 (1967)

    Google Scholar 

  123. Wellinghoff, S. T., Baer, E.: J. Appl. Polymer Sci. 22, 2025 (1978)

    Google Scholar 

  124. Ferry, J. D.: Viscoelastic Properties of Polymers, 3rd Ed., John Wiley, New York, 1980, p. 366

    Google Scholar 

  125. Kausch, H. H.: Polymer Fracture, Springer-Verlag, Heidelberg, 1978

    Google Scholar 

  126. Phoenix, S. L.: Internat. J. Fracture 14, 327 (1978)

    Google Scholar 

  127. Flory, P.: Principles of Polymer Chemistry, Cornell Univ. Press, Ithaca, 1953, p. 317

    Google Scholar 

  128. Murray, J., Hull, D.: J. Polymer Sci. A2 8, 583 (1970)

    Google Scholar 

  129. Doyle, M. J., Maranci, A., Orowan, E., Stork, S. T.: Proc. Roy. Soc. A329, 135 (1972)

    Google Scholar 

  130. Beaumont, P. W. R., Young, R. J.: J. Materials Sci. 10, 1334 (1975)

    Google Scholar 

  131. Aleshin, V. I., Aero, E. L., Lebedeva, M. F., Kuvshinskii, E. V.: Mekh. Komposytn. Mater. N1, 15 (1979)

    Google Scholar 

  132. Hart, E. W.: Int. J. Solids and Structures 16, 807 (1980)

    Google Scholar 

  133. Kramer, E. J.: Mechanisms of Toughening in Polymer Mixtures, in Polymer Compatibility and Incompatibility — Principles and Practices (ed. K. Solc), MMI Press, Midland, MI, 1982, p. 251

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

H. H. Kausch

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag

About this paper

Cite this paper

Kramer, E.J. (1983). Microscopic and molecular fundamentals of crazing. In: Kausch, H.H. (eds) Crazing in Polymers. Advances in Polymer Science, vol 52-53. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0024055

Download citation

  • DOI: https://doi.org/10.1007/BFb0024055

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-12571-6

  • Online ISBN: 978-3-540-38652-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics