Cellulose and cellulose derivatives: Recent advances in physical chemistry

  • Kenji Kamide
  • Masatoshi Saito
Conference paper
Part of the Advances in Polymer Science book series (POLYMER, volume 83)


This article reviews a recent progress on the physical chemistry of cellulose and cellulose derivatives (CD) and their applications to some industrial fields. Average degree of substitution for each hydroxyl groups attached to carbon 2, 3, and 6 in a pyranose ring «f k » (k=2, 3, 6) could be estimated by 1H-and 13C-NMR methods and distribution of total degree of substitution of some CD was evaluated by thin-layer chromatography. «f k » correlated closely with the anticoagulant activity of sodium cellulose sulfate and also with the absorbency against aqueous liquid of sodium carboxymethyl cellulose. Successive solution fractionation method afforded us to prepare CD samples with relatively narrow molecular weight distribution. Light scattering measurements on the gel-free CD solutions were carried out and the number-average molecular weight of cellulose acetate (CA) was determined by membrane and vapor pressure osmometry and gel-permiation chromatography. Lower and upper critical solution temperatures were determined for CA-solvent systems. The pore forming mechanism in the CA-solvent casting process was discribed relating to critical phenomena. The solvation was verified by the chemical shift in NMR spectra and by the adiabatic compressibility. The significant contribution of the draining effect on the hydrodynamic properties was experimentally confirmed. The excluded volume effect in CA solutions was very small. The rigidity of CD molecules in the unperturbed state was estimated by various methods based on the pearl necklace and wormlike chain models. The unperturbed chain dimension of CA molecules in the solutions was decided by the polarity of the solvent and the total degree of substitution. Cellulose dissolved in a hypotherical non-polar solvent behaves as almost a freely rotating chain and the low degree of flexibility of the cellulose chain deduced from the physical properties of cellulose solution and solid, is caused by the solvation or intra-or inter-molecular hydrogen bond. The solubility of cellulose in the aqueous alkali solution was discussed.


Cellulose Acetate Cellulose Derivative Cellulose Nitrate Narrow Molecular Weight Distribution Cellulose Diacetate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of Symbols and Abbreviations


unperturbed chain dimension




weight-average combined acetic acid content


unperturbed chain dimension of a hypothetical chain with free internal rotation


second virial coefficient


unperturbed chain dimension of a chain with infinite molecular weight


long range interaction parameter


characteristic ratio


diffusion constant


average total degree of substitution per glucopyranose ring


contour length


acute toxicity


mean molecular weight per skeletal bond


number-average molecular weight


viscosity-average molecular weight


weight-average molecular weight


a parameter depending on the molecular weight range in which Mark-Houwink-Sakurada equation is valid


total number of molecules in a sample


nitrogen content of a sample


number of segments in a molecular chain


Avogadro number


a parameter related to the frictional coefficient ξ, and analogous to Flory's viscosity parameter Φ


mean square end-to-end distance


rate of flow


solubility of cellulose in aqueous alkali solution


mean square radius of gyration




critical solution temperature


temperature difference between solution and solvent in the cell of vapor pressure osmometer


draining parameter


weight-average molar volume ratio of polymer to solvent


z-average molar volume ratio of polymer to solvent


length of a link in pearl neck-lace model


polymer concentration, g/cm3


hydrodynamic radius of a segment


average degree of substitution per hydroxyl group in a pyranose ring


molecular weight of the repeating unit of a polymer (solvent)


molecular weight of a segment


number of grams of the solvating solvent molecules per 1 g of polymer


degree of polymerization of j-th polymer


concentration dependence coefficient of polymer volume fraction vp, in polymer-solvent interaction parameter χ


concentration dependence coefficient of v p 2 in χ


persistence length determined by Benoit-Doty method


persistence length determined by Yamakawa-Fujii method


qBD in unperturbed state


unperturbed persistence length at coil limit


sedimentation constant


number of the solvating solvent molecules per repeating unit at infinite dilution


polymer volume fraction, v/v

\(\bar v_p\)

molar volume of polymer


critical polymer concentration, v/v


initial polymer concentration before phase separation


weight fraction of polymer, w/w


exponent in Mark-Houwink-Sakurada equation


exponent in the equation representing the dependence of diffusion coefficient on molecular weight


exponent in the equation representing the dependence of sedimentation coefficient on molecular weight


exponent in the equation representing the dependence of Flory's viscosity parameter Φ on molecular weight


exponent in the equation representing the dependence of the frictional coefficient on molecular weight


exponent in the equation representing the dependence of the linear expansion coefficient as on molecular weight


exponent in the equation representing the dependence of the ratio square of radius of gyration in unperturbed state to molecular weight 〈S20/M on molecular weight


Flory's viscosity parameter


penetration function


linear expansion coefficient


adiabatic compressibility


binary cluster integral


correlation coefficient


chemical shift




dielectric constant


limiting viscosity number (intrinsic viscosity)


viscosity of solvent


Flory's theta solvent


exponent in the equation representing the dependence of radius of gyration on molecular weight


frictional coefficient


density of the solution


conformation parameter


polymer-solvent interaction parameter


anti-coagulant activity


concentration independent part of χ


critical χ0


amorphous content determined as 1−χcc = cristallinity determined by X-ray diffraction method)


fraction of accessible part at equilibium determined by the deuteration IR method


relative amount of higher field peaks of the C4 carbon peaks in NMR spectrum


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

15 References

  1. 1.
    Staudinger, H., Freudenberger, H.: Ber. dtsch. chem. Ges. 63, 2331 (1930)Google Scholar
  2. 2.
    Kamide, K., Miyazaki, Y.: Polym. J. 10, 409 (1978)Google Scholar
  3. 3.
    Kamide, K., Okajima, K.: Polym. J. 13, 127 (1981)Google Scholar
  4. 4.
    Gardner, T. S., Purves, C. B.: J. Am. Chem. Soc. 64, 1539 (1942)CrossRefGoogle Scholar
  5. 5.
    Malm, C. J., Tanghe, J. J., Laird, B. C.: J. Am. Chem. Soc. 72, 2674 (1950)CrossRefGoogle Scholar
  6. 6.
    Goodlett, V. W., Dougherty, J. T., Patton, H. W.: J. Polym. Sci., A-1 9, 155 (1971)Google Scholar
  7. 7.
    Kamide, K., Saito, M.: Eur. Polym. J. 20, 903 (1984)CrossRefGoogle Scholar
  8. 8.
    Wu, T. K.: Macromol. 13, 74 (1980)CrossRefGoogle Scholar
  9. 9.
    Kamide, K., Okajima, K.: Polym. J. 13, 163 (1981)Google Scholar
  10. 10.
    Kamide, K., Okajima, K., Kowsaka, K., Matsui, T., Nomura, S., Hikichi, K.: Polym. J. 17, 909 (1985)Google Scholar
  11. 11.
    Kamide, K., Manabe, S., Osafune, E.: Makromol. Chem. 168, 173 (1973)CrossRefGoogle Scholar
  12. 12.
    Kamide, K., Matsui, T., Okajima, K., Manabe, S.: Cell. Chem. Technol. 16, 601 (1982)Google Scholar
  13. 13.
    Kamide, K., Okada, T., Terakawa, T., Kaneko, K.: Polym. J. 10, 547 (1978)Google Scholar
  14. 14.
    Bergström, S.: Naturwissenschaften 25, 706 (1935)CrossRefGoogle Scholar
  15. 15.
    Astrup, T., Galsmar, I., Volkert, M.: Acta Physiol. Scand. 8, 215 (1944)Google Scholar
  16. 16.
    Karrer, P., Köenig, H., Usteri, E.: Helv. Chim. Acta 26, 1296 (1943)CrossRefGoogle Scholar
  17. 17.
    Astrup, J., Piper, J.: Acta Physiol. Scand. 9, 351 (1945)Google Scholar
  18. 18.
    Piper, J.: Acta Physiol. Scand. 9, 28 (1945)Google Scholar
  19. 19.
    Piper, J.: “Farmakologiske Undersögelser över Syntetiske Heparin-lignande Stoffer”, (Disp.) Copenhagen, 1945Google Scholar
  20. 20.
    Felling, J., Wiley, C. E.: Arch. Biochem. Biophys. 85, 313 (1959)CrossRefPubMedGoogle Scholar
  21. 21.
    Rothschild, A. M.: J. Pharmac. Chemother. 33, 501 (1968)Google Scholar
  22. 22.
    Rothschild, A. M., Castania, A.: J. Pharm. Pharmac. 20, 77 (1968)Google Scholar
  23. 23.
    Kiss, J.: “Chemical Structure of Heparin”, in “Heparin”, Thomas, K. ed., Academic Press, London, 1976, p9Google Scholar
  24. 24.
    Kamide, K., Okajima, K., Matsui, T., Ohnishi, M., Kobayashi, H.: Polym. J. 15, 309 (1983)Google Scholar
  25. 25.
    Kamide, K., Okajima, K., Matsui, T., Kobayashi, H.: Polym. J. 16, 259 (1984)Google Scholar
  26. 26.
    Jansen, E.: Ger. Pat., 332, 203 (1918)Google Scholar
  27. 27.
    Callihan, C. D.: “Cellulose Technology Research”, Turbak, A. F. ed., ACS series 10, 1975, p33Google Scholar
  28. 28.
    Ott, E., Spurlin, H. M.: “Cellulose and Cellulose Derivatives”, vol. II, 1954, John Wiley & Sons Inc., p944Google Scholar
  29. 29.
    Kamide, K., Okajima, K., Matsui, T., Kowsaka, K.: Polym. J. 16, 857 (1984)Google Scholar
  30. 30.
    See, for example, Cragg, L. H., Hammerschlag, H.: Chem. Rew. 39, 79 (1946), Hall, R. W., “Techniques of Polymer Characterization”, Allen, P. W. ed., 1958, Butterworth London, Chp. 2, Guzman, G. M., “Progress in High Polymers”, Robb, J. C., Peader, F. W. ed., 1961, Heywood London, Vol. 1, p113, Cantow, M. J. R. ed., “Polymer Fractionation”, 1967, New York, Academic Press, Kawai, T. ed., “Polymer Engineering”, 1967, Vol. 4, Chijin Shokan, Tokyo, Tung, L. H. ed., “Fractionation of Synthetic Polymers”, 1977, Marcel Dekker, New YorkCrossRefGoogle Scholar
  31. 31.
    Kamide, K.: “Fractionation of Synthetic Polymers”, Tung, L. H. ed., 1977, Marcel Dekker, New York, Chp. 2Google Scholar
  32. 32.
    Kamide, K., Miyazaki, Y., Abe, T.: Makromol. Chem. 117, 485 (1976)CrossRefGoogle Scholar
  33. 33.
    Kamide, K., Miyazaki, Y., Abe, T.: Polym. J. 9, 395 (1977)Google Scholar
  34. 34.
    Kamide, K., Matsuda, S., Miyazaki, Y.: Polym. J. 16, 479 (1984)Google Scholar
  35. 35.
    Kamide, K., Matsuda, S.: Polym. J. 16, 515 (1984)Google Scholar
  36. 36.
    Kamide, K., Matsuda, S.: Polym. J. 16, 591 (1984)Google Scholar
  37. 37.
    Kamide, K., Miyazaki, Y.: Polym. J. 12, 153 (1980)Google Scholar
  38. 38.
    Kamide, K., Miyazaki, Y., Abe, T.: Brit. Polym. J. 13, 168 (1981)Google Scholar
  39. 39.
    Kamide, K., Miyazaki, Y., Abe, T.: Polym. J. 11, 523 (1979)Google Scholar
  40. 40.
    Kamide, K., Terakawa, T., Miyazaki, Y.: Polym. J. 11, 285 (1979)Google Scholar
  41. 41.
    Saito, M.: Polym. J. 15, 249 (1983)Google Scholar
  42. 42.
    Kamide, K., Saito, M., Abe, T.: Polym. J. 13, 421 (1981)Google Scholar
  43. 43.
    See, for example, Nair, P. R. M., Gohil, R. M., Patel, K. C., Patel, R. D.: Eur. Polym. J. 13, 273 (1977), Lachs, H., Kronman, K., Wajs, J.: Kollid Z. 79, 91 (1937), Levi, G. R., Giera, A.: Gazz, Chim. Ital. 67, 719 (1937), Levi, G. R., Villota, U., Montirelli, M.: Gazz. Chim. Ital. 68, 589 (1938), Bezzi, S., Croatta, U.: Atti Inst. Veneto Sci. 99, 905 (1939–1940), Munster, A.: J. Polym. Sci. 5, 333 (1950), Sobue, H., Matsuzaki, K., Yamakawa, K.: Sen'i Gakkaishi 12, 100 (1956)CrossRefGoogle Scholar
  44. 44.
    See, for example, Hunt, M. L., Newman, S., Scheraga, H. A., Flory, P. J.: J. phys. Chem. 60, 1278 (1956), Manley, R. S. J.: Ark. Kemi. 9, 519 (1956), Huque, M. M., Goring, D. A., Mason, S. G.: Can. J. Chem. 36, 952 (1958), Tanner, D. W., Berry, G. C.: J. Polym. Sci. C 12, 941 (1974), Holtzer, A. M., Benoit, H., Doty, P.: J. phys. Chem. 58, 624 (1954)CrossRefGoogle Scholar
  45. 45.
    Kamide, K., Saito, M.: Polym. J. 14, 517 (1982)Google Scholar
  46. 46.
    See, for example, Wales, M., Swanson, D. L.: J. Phys. & Colloid Chem. 55, 203 (1951), Sperling, L. H., Easterwood, M.: J. Appl. Polym. Sci. 4, 25 (1960), Bikales, N. M., Segal, L. ed., “High Polymers”, Vol. V, Part IV, John Wiley & Sons, Inc., New York, 1971, p433, Klenin, V. J., Denisova, G. P.: J. Polym. Sci., Polym. Symp. No. 42, 1563 (1973), Goeble, K. D., Berry, G. C.: J. Polym. Sci., Polym. Phys. Ed. 15, 555 (1977)Google Scholar
  47. 47.
    Kamide, K., Terakawa, T., Manabe, S.: Sen'i Gakkaishi 30, T-464 (1974)Google Scholar
  48. 48.
    Kamide, K., Terakawa, T., Manabe, S., Miyazaki, Y.: Sen'i Gakkaishi, 31, T-410 (1975)Google Scholar
  49. 49.
    Kamide, K., Manabe, S., Terakawa, T.: JP885, 873 (1977), and 909, 158 (1978)Google Scholar
  50. 50.
    Kamide, K., Terakawa, T., Uchiki, H.: Makromol. Chem. 177, 1447 (1976)CrossRefGoogle Scholar
  51. 51.
    Kamide, K., Terakawa, T., Matsuda, S.: Brit. Polym. J. 15, 91 (1983)Google Scholar
  52. 52.
    Ikeda, T., Kawaguchi, H.: Rep. Prog. Polym. Sci., Jpn. 9, 23 (1966)Google Scholar
  53. 53.
    Cowie, J. M., Ranson, R. J.: Makromol. Chem. 143, 105 (1971)CrossRefGoogle Scholar
  54. 54.
    Kamide, K., Abe, T., Miyazaki, Y., Watanabe, M.: J. Soc. Text. Masch. Jpn. 34, T-1 (1981)Google Scholar
  55. 55.
    Suzuki, H., Ohno, K., Kamide, K., Miyazaki, Y.: Netsusokutei (Calor. therm. Analysis) 8, 67 (1981)Google Scholar
  56. 56.
    Suzuki, H., Kamide, K., Saito, M.: Eur. Polym. J. 18, 123 (1980)CrossRefGoogle Scholar
  57. 57.
    Suzuki, H., Muraoka, Y., Saito, M., Kamide, K.: Brit. Polym. J. 14, 23 (1982)Google Scholar
  58. 58.
    Kamide, K., Manabe, S.: “Material Science of Synthetic Membranes; Role of Microphase Separation Phenomena in the Formation of Porous Polymeric Membrane”, Loyed, D. R. ed., ACS Symposium Series 269, ACS, Washington D.C., 1985, Chp. 9, p197Google Scholar
  59. 59.
    Kamide, K., Matsuda, S.: Polym. J. 16, 825 (1984)Google Scholar
  60. 60.
    Kamide, K., Matsuda, S., Saito, M.: Polym. J. 17, 1013 (1985)Google Scholar
  61. 61.
    Kamide, K., Matsuda, S.: unpublished resultsGoogle Scholar
  62. 62.
    Koningsveld, R., Kleintjens, L. A., Shultz, A. R.: J. Polym. Sci., A-2 8, 126 (1970)Google Scholar
  63. 63.
    Shultz, A. R., Flory, P. J.: J. Am. Chem. Soc. 74, 4760 (1952)CrossRefGoogle Scholar
  64. 64.
    See, for example, Kurata, M.: “Industrial Chemistry of High Polymers”, Vol. III, Modern Industrial Chemistry Ser. No. 18, Asakura, Tokyo, 1975, Chp. 4Google Scholar
  65. 65.
    Kurata, M., Fukatsu, M., Sotobayashi, H., Yamakawa, H.: J. Chem. Phys. 41, 139 (1964)CrossRefGoogle Scholar
  66. 66.
    Fixman, M.: J. Chem. Phys. 36, 3123 (1962)CrossRefGoogle Scholar
  67. 67.
    Saito, M.: Polym. J. 15, 213 (1983)Google Scholar
  68. 68.
    Kamide, K., Saito, M.: Eur. Polym. J. 19, 507 (1983)CrossRefGoogle Scholar
  69. 69.
    Kamide, K., Saito, M., Suzuki, H.: Makromol. Chem., Rapid Commun. 4, 33 (1983)Google Scholar
  70. 70.
    Spurlin, H. M.: “Cellulose and Cellulose Derivatives”, Otta, E. ed., Interscience Pub., New York, N.Y., 1943, p868Google Scholar
  71. 71.
    Clermont, P.: Ann. Chim. 12, 2420 (1943)Google Scholar
  72. 72.
    Marsden, R. J. B., Urquhart, A. R.: J. Text. Inst. 33, T-105 (1942)Google Scholar
  73. 73.
    Kamide, K., Okajima, K., Saito, M.: Polym. J. 13, 115 (1981)Google Scholar
  74. 74.
    See, for example, Passynsky, A.: Acta physicochem., USSR 22, 137 (1947), Passynsky, A.: J. Polym. Sci. 29, 61 (1958)Google Scholar
  75. 75.
    Moore, W. R., Tidswell, B. M.: Makromol. Chem. 81, 1 (1965)CrossRefGoogle Scholar
  76. 76.
    Moore, W. R.: J. Polym. Sci., Part C, No16, 571 (1967)Google Scholar
  77. 77.
    Moore, W. R.: “Solution Properties of Natural Polymers, An International Symposium”, The Chemical Society Burlington House, London, W.1, 1968, Group 3, p185Google Scholar
  78. 78.
    Schulz, G. V., Penzel, E.: Makromol. Chem. 112, 260 (1968)CrossRefGoogle Scholar
  79. 79.
    Penzel, E., Schulz, G. V.: Makromol. Chem. 113, 64 (1968)CrossRefGoogle Scholar
  80. 80.
    Shanbhag, V. P.: Ark, Kemi 29, 1 (1968)Google Scholar
  81. 81.
    Shanbhag, V. P.: Ark. Kemi 29, 139 (1968)Google Scholar
  82. 82.
    Brown, W., Henley, D., Ohman, J.: Makromol. Chem. 64, 49 (1963)CrossRefGoogle Scholar
  83. 83.
    Manley, R. S.: Ark, Kemi 9, 519 (1956)Google Scholar
  84. 84.
    Henley, D.: Ark. Kemi 18, 327 (1961)Google Scholar
  85. 85.
    Valtasaari, L.: Makromol. Chem. 150, 117 (1971)CrossRefGoogle Scholar
  86. 86.
    Krigbaum, W. R., Sperling, L. H.: J. phys. Chem. 64, 99 (1960)Google Scholar
  87. 87.
    Neely, W. B.: J. Polym. Sci., A 1, 311 (1963)Google Scholar
  88. 88.
    Das, B., Ray, A. K., Choudhurry, P. K.: J. phys. Chem. 73, 3413 (1969)CrossRefGoogle Scholar
  89. 89.
    Das, B., Choudhury, P. K.: J. Polym. Sci., A-1 5, 769 (1967)Google Scholar
  90. 90.
    Brown, W., Henley, D.: Makromol. Chem. 79, 68 (1964)CrossRefGoogle Scholar
  91. 91.
    Kurata, M., Tsunashima, Y., Iwata, M., Kamata, K.: “Polymer Handbook”, 2nd ed., Brandrup, J., Immergut, E. H. ed., John Wiley & Sons, New York, N.Y., 1975Google Scholar
  92. 92.
    Kamide, K., Miyazaki, Y., Abe, T.: Makromol. Chem. 180, 2801 (1979)CrossRefGoogle Scholar
  93. 93.
    Nair, P. R. M., Gohil, R. M., Patel, K. C., Patel, R. D.: Eur. Polym. J. 13, 273 (1977)CrossRefGoogle Scholar
  94. 94.
    Dymarchuk, N. P., Mishchenko, K. P., Fomia, T. V.: Zhur. Prikl. Khim. (Leningrad), 37, 2263 (1964)Google Scholar
  95. 95.
    Shakhparonov, M. I., Zahurdayeva, N. P., Podgarodetshii, Ye. K.: Vysokomol. Soedin., Ser. A, 9, 1212 (1967)Google Scholar
  96. 96.
    Staudinger, H., Eicher, T.: Makromol. Chem. 10, 261 (1953)CrossRefGoogle Scholar
  97. 97.
    Sharples, A., Major, H. M.: J. Polym. Sci. 27, 433 (1958)CrossRefGoogle Scholar
  98. 98.
    Howard, P., Parikh, S. S.: J. Polym. Sci., Part A-1 4, 407 (1966)Google Scholar
  99. 99.
    Ishida, S., Komatsu, H., Kato, H., Saito, M., Miyazaki, Y., Kamide, K.: Makromol. Chem. 183, 3075 (1982)CrossRefGoogle Scholar
  100. 100.
    Singer, S. J.: J. Chem. Phys. 15, 341 (1947)CrossRefGoogle Scholar
  101. 101.
    Holmes, F. H., Smith, D. I.: Trans. Faraday Soc. 53, 69 (1957)CrossRefGoogle Scholar
  102. 102.
    Golubev, V. M., Frenkel, S. Y.: Vysokomol. Soedin., Ser. A, 10, 750 (1968)Google Scholar
  103. 103.
    Howlett, F., Minshall, E., Urquhart, A. R.: J. Text. Inst. 35, T133 (1944)Google Scholar
  104. 104.
    Mandelkern, L., Flory, P. J.: J. Am. chem. Soc. 74, 2517 (1952)CrossRefGoogle Scholar
  105. 105.
    Flory, P. J., Spurr, O. K. Jr., Carpenter, D. K.: J. Polym. Sci. 27, 231 (1958)CrossRefGoogle Scholar
  106. 106.
    Moore, W. R., Brown, A. M.: J. Colloid Sci. 14, 1 (1959)CrossRefGoogle Scholar
  107. 107.
    Moore, W. R., Brown, A. M.: J. Colloid Sci. 14, 343 (1959)CrossRefGoogle Scholar
  108. 108.
    Moore, W. R., Edge, G. D.: J. Polym. Sci. 47, 469 (1960)CrossRefGoogle Scholar
  109. 109.
    Kamide, K., Ohno, K., Kawai, T.: Kobunshi Kagaku 20, 151 (1963)Google Scholar
  110. 110.
    Suzuki, H., Miyazaki, Y., Kamide, K.: Eur. Polym. J. 16, 703 (1980)CrossRefGoogle Scholar
  111. 111.
    See, for example, Yamakawa, H.: “Modern Theory of Polymer Solutions”, Harper & Row, New York, 1971, Chp. III, p91Google Scholar
  112. 112.
    Kurata, M., Stockmayer, W. H.: Fortschr. Hochpolym. Forsch. 3, 196 (1963)CrossRefGoogle Scholar
  113. 113.
    Kurata, M., Yamakawa, H., Teramoto, E.: J. Chem. Phys. 28, 785 (1958)CrossRefGoogle Scholar
  114. 114.
    Baumann, H.: J. Polym. Sci., Polym. lett. 3, 1069 (1965)Google Scholar
  115. 115.
    Stockmayer, W. H., Fixman, M.: J. Polym. Sci., Part C, 1, 137 (1963)Google Scholar
  116. 116.
    Kamide, K., Moore, W. R.: J. Polym. Sci., Polym. lett. 2, 1029 (1964)Google Scholar
  117. 117.
    Cowie, J. M., Bywater, S.: Polymer 6, 197 (1965)CrossRefGoogle Scholar
  118. 118.
    Kamide, K., Miyazaki, Y.: Polym. J. 10, 539 (1978)Google Scholar
  119. 119.
    Kamide, K., Saito, M.: Eur. Polym. J. 17, 1049 (1981)CrossRefGoogle Scholar
  120. 120.
    Kamide, K., Saito, M.: Eur. Polym. J. 18, 661 (1982)CrossRefGoogle Scholar
  121. 121.
    Benoit, H., Doty, P. M.: J. Phys. Chem. 57, 958 (1953)CrossRefGoogle Scholar
  122. 122.
    Yamakawa, H., Stockmayer, W. H.: J. Chem. Phys. 57, 2843 (1972)CrossRefGoogle Scholar
  123. 123.
    Kirkwood, J., Riseman, J.: J. Chem. Phys. 16, 565 (1948)CrossRefGoogle Scholar
  124. 124.
    Yamakawa, H., Fujii, M.: Macromol. 7, 128 (1974)CrossRefGoogle Scholar
  125. 125.
    Kamide, K., Okajima, K., Matsui, T.: USP 4,370, 168 (1980)Google Scholar
  126. 126.
    See, for example, Neals, S. M.: J. Text. Inst. 20, T373 (1920), Beadle, C., Stevens, H. P., the 8th International Congress on Applied Chemistry, Vol. 13, 1912, p25Google Scholar
  127. 127.
    Dillenius, H.: Kunstseide Zellwolle 22, 314 (1940)Google Scholar
  128. 128.
    Schwart, E., Zimmerman, W.: Melliads Textileber. Int. 22, 525 (1941)Google Scholar
  129. 129.
    Staudinger, H., Mohr, R.: J. Prakt. Chem. 158, 233 (1941)CrossRefGoogle Scholar
  130. 130.
    Eisenluth, O.: Cellulose Chem. 19, 45 (1941)Google Scholar
  131. 131.
    See, for example, Atalla, R. H.: J. Am. chem. Soc. 102, 3249 (1980), Earl, W. L., Vander Hart, D. L.: J. Am. chem. Soc. 102, 3251 (1980), Earl, W. L. Vander Hart, D. L.: Macromol. 14, 570 (1981), Hirai, F., Horii, A., Kitamaru, R.: Polym. Prepr. Jpn. 31, 842 (1982), Hirai, F., Horii, A., Akita, A., Kitamaru, R.: Polym. Prepr. Jpn. 31, 2519 (1982), Hirai, F., Horii, A., Kitamaru, R.: Prepr. 47th Chem. Soc. Jpn. Ann. Meeting, 1983, p1392, Hayashi, J., Takai, M., Tanaka, R., Hatano, M., Mozawa, S.: Prepr. 47th Chem. Soc. Jpn. Ann. Meeting, 1983, p1393, Maciel, G. E.: Macromol. 15, 686 (1982)CrossRefGoogle Scholar
  132. 132.
    Kamide, K., Kowsaka, K., Okajima, K.: Polym. J. 17, 701 (1985)Google Scholar
  133. 133.
    Kamide, K., Okajima, K., Kowsaka, K., Matsui, T.: Polym. J. 17, 707 (1985)Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Kenji Kamide
    • 1
  • Masatoshi Saito
    • 1
  1. 1.Fundamental Research Laboratory of Fibers and Fiberforming PolymersAsahi Chemical Industry, Co. Ltd.Takatsuki, OsakaJapan

Personalised recommendations