Skip to main content

An alternative model of quantum key agreement via photon coupling

  • Session 10: Odds and Ends
  • Conference paper
  • First Online:
Information Security and Privacy (ACISP 1996)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1172))

Included in the following conference series:

  • 138 Accesses

Abstract

It has recently been shown that shared cryptographic quantum bits are achievable through the use of an optical coupler, instead of polarised photons. We show that such shared cryptographic bits can also be produced by using a different optical apparatus — a beam-splitter. An important advantage of such a system is that it could be experimentally more feasible than an optical coupler.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aspect, A., Grangier, P., Roger, G.: Experimental realization of Einstein — Podolsky — Rosen — Bohm gedankenexperiment: A new violation of Bell's inequalities. Phys. Rev. Lett. 49 (1982) 91–94.

    Google Scholar 

  2. Barnett, S. M., Huttner, B., Phoenix, S. J. D.: Eavesdropping strategies and rejected-data protocols in quantum cryptography. Journal of Modern Optics 40 (1993) 2501–2513.

    Google Scholar 

  3. Bell, J. S.: On the Einstein Podolsky Rosen Paradox. Physics (N.Y.) 1 (1964) 195.

    Google Scholar 

  4. Bennett, C. H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68 (1992) 3121–3124.

    Google Scholar 

  5. Bennett, C. H., Bessette, F., Brassard, G., Salvail, L., Smolin, J.: Experimental quantum cryptography. Journal of Cryptology 5 (1992) 3–28.

    Google Scholar 

  6. Bennett, C. H., Brassard, G., Breidbard, S., Wiesner, S.:. Quantum cryptography, or unforgeable subway token. In Advanced in Cryptography: Prodeedings of Crypto 82 (1983) Plenum Press pp. 267–275.

    Google Scholar 

  7. Bennett, C. H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W. K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70 (1993) 1895–1899.

    Google Scholar 

  8. Bennett, C. H., Brassard, G., Mermin, N. D.: Quantum cryptography without Bell's theorem. Phys. Rev. Lett. 68 (1992) 557–559.

    Google Scholar 

  9. Bohm, D. J.:. “Quantum Theory”. Prentice-Hall, Englewood Cliffs, N.J. 1951.

    Google Scholar 

  10. Ekert, A. K., Rarity, J. G., Tapster, P. R., Palma, G. M.: Practical quantum cryptography based on two-photon interferometry. Phys. Rev. Lett. 69 (1992) 1293–1295.

    Google Scholar 

  11. Mu, Y., Seberry, J., Zheng, Y.: Shared cryptographic bits via quantized quandrature phase amplitudes of light. Optics Communications (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Josef Pieprzyk Jennifer Seberry

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mu, Y., Zheng, Y. (1996). An alternative model of quantum key agreement via photon coupling. In: Pieprzyk, J., Seberry, J. (eds) Information Security and Privacy. ACISP 1996. Lecture Notes in Computer Science, vol 1172. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0023310

Download citation

  • DOI: https://doi.org/10.1007/BFb0023310

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61991-8

  • Online ISBN: 978-3-540-49583-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics