Advertisement

An exactly solvable model of a crystal with non-point atoms

  • Yu. A. Kuperin
  • K. A. Makarov
  • B. S. Pavlov
6. Waveguides and Crystals
Part of the Lecture Notes in Physics book series (LNP, volume 324)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu.N.Demkov, V.N.Ostrovskii: The Zero-Range Potentials Approach to Nuclear Physics, Leningrad State Univ. 1975(in Russian.Google Scholar
  2. 2.
    A.Grossmann,R.Høegh-Krohn, M.Mebkhout, J.Math.Phys. 21 (1980),2376CrossRefGoogle Scholar
  3. 3.
    Yu.E.Karpeshina, Teor. Mat. Fiz. 57 (1983), 304Google Scholar
  4. 4.
    E.Fermi, Nuovo Cimento, 11 (1934),157Google Scholar
  5. 5.
    B.S.Pavlov, Teor. Mat. Fiz 59 (1984),345Google Scholar
  6. 6.
    B.S.Pavlov, N.V.Smirnov, in “Probl. Mat. Fiz:, Leningrad State Univ. 1987, v.12, p.155Google Scholar
  7. 7.
    B.S.Pavlov, S.E.Cheremshantsev, Preprint LOMI P-15-85, Leningrad 1985Google Scholar
  8. 8.
    F.I.Dalidtchik, V.Z.Slonim, JETP Letters 31 (1980), 122Google Scholar
  9. 9.
    A.W.Thomas, Adv. Nucl. Phys., 13 (1984), 1Google Scholar
  10. 10.
    Yu.A.Kuperin, K.A.Makarov, B.S.Pavlov, Teor. Mat Fiz. 69 (1986),100Google Scholar
  11. 11.
    Yu.A.Kuperin, K.A.Makarov, S.P.Merkuriev, B.S.Pavlov, A.K.Motovilov, ITP-Budapest-Report N 441, Budapest 1986Google Scholar
  12. 12.
    Yu.A.Kuperin, K.A.Makarov, S.P.Merkuriev, A.K.Motovilov, B.S.Pavlov, Proc. of the School on Few-Body Quark-Hadronic Systems, Vilnus 1986, p.28Google Scholar
  13. 13.
    F.V.Atkinson: Discrete and Continuous Boundary Problems, Academic Press, New York 1964Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Yu. A. Kuperin
    • 1
  • K. A. Makarov
    • 1
  • B. S. Pavlov
    • 1
  1. 1.Department of Mathematical and Computational PhysicsInstitute for Physics, Leningrad State UniversityLeningradUSSR

Personalised recommendations