Skip to main content

Molecular mobility, deformation and relaxation processes in polymers

  • Conference paper
  • First Online:
Book cover Polymer Chemistry

Part of the book series: Advances in Polymer Science ((POLYMER,volume 26))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

Ael or A:

Elastic potential caused by an external stress

A diel :

Electric potential caused by an external electric field

A, B, C1, C2, C3, C4:

Constants

a:

Characteristic quasiviscosity in the WLF equation

c:

Concentration

D:

Diffusion constant

E:

Electric field strength (E or orientation field strength)

E or Em:

Young modules (E m extended to molecular dimension in our quasicubic model)

F:

Force

G or G′, G″:

Shear modules (G′ real, G″ imaginary component) (G 0 for purely elastic deformation)

f r :

Reducing factor

h:

Planck constant (h=6,62 10−34 Joule sec)

I:

Diffusion current

K:

Modules of compressibility

k:

Boltzmann constant (k=1,380 10−23 Joule/oK)

L:

Length of a capillary

L:

Laplace transformation

M:

Torque

m, n:

Constants characterizing the amorphous state

m:

Mass of a flowing unit

n:

Number of coupled processes, characterizing a network N≈1/n

p:

Pressure

P:

Electric polarisation (P def deformation, P or orientation polarisation)

px :

Momentum coordinate

r:

Spatial coordinate

r 0 :

Radius of a flowing unit, distance between the maximum and the saddle point in the Lennard-Jones potential

R:

Radius of a capillary or cylinder (R i inner, R a outer radius)

S:

Entropy

T:

Temperature (T g glass transition temperature)

z:

Number of molecular dislocations in the direction of an external stress per unit area

z 0 :

Number of flowing units or segments (per unit area)

U:

Potential energy (U i, Uk potential energy at a minimum of an energy hyperplane, U ov energy needed to overcome an energy barrier in special cases, ΔU activation energy)

v:

Velocity

V:

Volume

W:

Probability (W p probability for molecular dislocation processes)

y, z:

Spatial coordinates

α:

Partion of flowing units participating in molecular fluctuation processes (molecules have more than one possible conformation)

α, β, γ, δ, ϕ, ψ, θ:

Special angles

β th :

Linear thermal expansion coefficient

γ:

Shear rate

ε:

Elongation Λ=1+ε=1+Δ1/1

ε:

Dielectric constant (ε0 = 8,854 10−12 As/Vm)

Δ, δ:

Differences

χ:

Quantity describing an amorphous state

η:

Viscosity

μ:

Dipole moment

ν th :

Average frequency for thermal vibrations, ν th=kT/h≈1013

α:

Molecular polarisability

τ:

Relaxation time; τstress for stress, τstrain for strain

τ fl :

Fluctuation time

ω:

Angular velocity, frequency

References

  1. Stuart, H. A.: Die Physik der Hochpolymeren, Springer-Berlin-Göttingen-Heidelberg 1953, 1956

    Google Scholar 

  2. Saito, S.: Kolloid Zs. 189, 116 (1963)

    Article  Google Scholar 

  3. Debye, P., Bueche, F.: J. Chem. Phys. 19, 589 (1951)

    Article  Google Scholar 

  4. Williams, M. J., Landel, R. F., Ferry, I. W.: Amer. Chem. Soc. 77, 4701 (1955)

    Google Scholar 

  5. Tobolsky: Structure and properties of polymers. New York: Wiley 1966

    Google Scholar 

  6. Kovacs, A. J.: Advan. Polymer Sci. 3, 394 (1964)

    Google Scholar 

  7. McCrum, N. G., Read, B. E., Williams, G.: Anelastic and dielectric effects in polymer solids. New York: Wiley 1967

    Google Scholar 

  8. Bartenew, G. M., Zugev, Y. S.: Strength and failure of viscoelastic materials, London-New York: Pergamon Press 1968 (transl. from Russian)

    Google Scholar 

  9. Prandtl, L. Z.: Zs. Angew. Math. u. Mech. 8, 85 (1928)

    Google Scholar 

  10. Glasstone, S., Laidler, K. I., Eyring, H.: The theory of rate processes New York: McGraw Hill 1941

    Google Scholar 

  11. Holzmüller, W.: Phys. Zs. 41, 499 (1940)

    Google Scholar 

  12. Holzmüller, W.: Phys. Zs. 42, 273 (1941)

    Google Scholar 

  13. Holzmüller, W.: Zs. Phys. Chem. 202, 330 (1954); 203, 163 (1954)

    Google Scholar 

  14. Kirkwood, J. G.: J. Chem. Phys. 7, 911 (1939); 4, 592 (1936)

    Article  Google Scholar 

  15. Kirkwood, J. G., Fuoss, R. M.: J. Chem. Phys. 9, 329 (1941)

    Article  Google Scholar 

  16. Holzmüller, W.: Koll. Zs. u. Zs. f. Polym. 203, 7 (1965)

    Article  Google Scholar 

  17. Holzmüller, W.: Koll. Zs. 155, 119 (1957)

    Article  Google Scholar 

  18. Holzmüller, W., Altenburg, K.: Physik d. Kunststoffe, Berlin: Akadem. Verl. 1961

    Google Scholar 

  19. Holzmüller, W.: Plaste u. Kautschuk 21, 329 (1974)

    Google Scholar 

  20. Holzmüller, W., Pitzschke, H., Wendisch, P.: Koll. Zs. u. Zs. f. Polymere 216, 26 (1967)

    Article  Google Scholar 

  21. Rossini, F. D.: Chemical Thermodynamics. New York: Wiley 1950

    Google Scholar 

  22. Kästner, S.: Koll. Zs. u. Zs. f. Polymere 156, 142 (1958); 157, 138 (1958)

    Google Scholar 

  23. Wobser, G., Hägele, P. C.: Ber. Bunsengesellsch. 74, 896 (1970)

    Google Scholar 

  24. Van Krevelen, D. W.: Properties of polymers and correlations with chemical structure. Amsterdam-London-New York: Elsevier Publ. Comp. 1972

    Google Scholar 

  25. Schrödinger, E.: Stat. Thermodynamik, Leipzig: J. A. Barth 1952

    Google Scholar 

  26. Baur, H.: Zs. f. Naturforschg. 26a, 979 (1971)

    Google Scholar 

  27. Zaeschmar, G.: Koll. Zs. and Zs. f. Polymere 177, 35 (1961); 181, 7 (1962)

    Google Scholar 

  28. Fowler, R., Guggenheim, E. A.: Statistical thermodynamics. Cambridge: University Press 1956

    Google Scholar 

  29. Großöhme, T., Wünsche, P.: Zs. d. KMU 21, 644 (1972)

    Google Scholar 

  30. Roth, H.-K.: Dissertation B Leipzig 1976, Wiss. Zs. KMU 21, 637 (1972)

    Google Scholar 

  31. Hirai, H., Eyring, H.: J. Polym. Science 37, 51 (1959)

    Article  Google Scholar 

  32. Dugdale, J. S., McDonald, D. K. C.: Phys. Rev. 96, 57 (1954)

    Article  Google Scholar 

  33. Adam, G.: Koll. Zs. and Zs. f. Polymere 180, 11 (1962)

    Article  Google Scholar 

  34. Jenckel, E.: Kolloid Zs. 100, 163 (1942)

    Article  Google Scholar 

  35. Breuer, H., Rehage, G.: Koll. Zs. and Zs. f. Polymere 216–217, 159 (1967)

    Article  Google Scholar 

  36. Bondi, A.: Physical properties of molecular crystals, liquids and glasses. New York: John Wiley 1968

    Google Scholar 

  37. Marei, A. I.: Kautch. i. Resina. 19, 2 (1960)

    Google Scholar 

  38. Wunderlich, B., Jones, L. D.: J. Macromol. Sci. 3, 67 (1969)

    Google Scholar 

  39. Illers, K.-H.: Makromolekulare Chemie. 38, 168 (1960)

    Article  Google Scholar 

  40. Becker, R.: Zs. Phys. Chemie, Leipzig (to be published)

    Google Scholar 

  41. Gordon, M., Taylor, J. S.: J. Appl. Chem. 2, 493 (1956)

    Google Scholar 

  42. Boyer, R. F.: Rubber Chem. Technol. 36, 1303 (1963)

    Google Scholar 

  43. Kanig, G.: Koll. Zs. and Zs. f. Polymere. 233, 829 (1969)

    Article  Google Scholar 

  44. Kovacs, A. J.: Rheol. Acta 5, 262 (1966)

    Article  Google Scholar 

  45. Onsager, L. J.: Amer. Chem. Soc. 58, 1486 (1936)

    Article  Google Scholar 

  46. Fröhlich, H.: Theory of Dielectrics, 2. printing. Oxford: University Press 1958

    Google Scholar 

  47. Yamafuji, K.: Koll. Zs. and Zs. f. Polymere. 195, 111 (1974)

    Article  Google Scholar 

  48. Yamafuji, K.: J. Phys. Soc. Japan 15, 2295 (1960)

    Article  Google Scholar 

  49. Ishida, Y.: Koll. Zs. 174, 124 (1961); 174, 162 (1971)

    Article  Google Scholar 

  50. Ishida, Y., Yamafuji, K.: Koll. Zs. and Zs. f. Polymere. 183, 15 (1963)

    Google Scholar 

  51. Kirkwood, J. G.: J. Polym. Sci. 12, 1 (1944); J. Chem. Phys. 14, 51 (1946)

    Article  Google Scholar 

  52. Saito, S.: Res. Electrotechn. Lab. Tokyo. 1964, 648

    Google Scholar 

  53. Hoffman, J. D.: 8. Ampere Colloque. 12, 36 (1959)

    Google Scholar 

  54. Hoffman, J. D.: J. Chem. Phys. 20, 541 (1952); 22, 156 (1954); 23, 1331 (1955)

    Article  Google Scholar 

  55. Gottlib, Yu. Ya., Wolkenstein, N. V.: J. Techn. Phys. 23, 1936 (1953)

    Google Scholar 

  56. Gottlib, Yu. Ya., Solichow, K. M.: Solid State Phys. 4, 2461 (1962)

    Google Scholar 

  57. Gottlib, Yu. Ya., Darinskij, A. A.: Wys. mol. soed. 6, 2938 (1964); 8, 580 (1967)

    Google Scholar 

  58. Yamafuji, K.: Koll. Zs. and Zs. f. Polym. 195, 111 (1964)

    Article  Google Scholar 

  59. Williams, G.: Trans. Farad. Soc. 59, 1397 (1963); 60, 1548, 1556 (1964); 61, 1564 (1965)

    Article  Google Scholar 

  60. Slater, J., Kirkwood, J. G.: J. Phys. Rev. 37, 682 (1931)

    Article  Google Scholar 

  61. Guggenheim, E. A.: Trans. Far. Soc. 37, 271 (1941)

    Article  Google Scholar 

  62. McGrum, N. G., Read, B. E., Williams, G.: Anelastic and dielectric effects in polymer solids. New York: Wiley 1967

    Google Scholar 

  63. Holzmüller, W.: Koll. Zs. and Zs. f. Polymere. 205, 24 (1965)

    Article  Google Scholar 

  64. Holzmüller, W., Ilberg, W.: Rheol. Acta 5, 1 (1966)

    Article  Google Scholar 

  65. Holzmüller, W.: Pure and Appl. Chemistry London. 12, 359 (1966)

    Google Scholar 

  66. Bartenev, G. M., Selenew, Yu. V.: Material Science and Engineerin (Netherland). 2, 137 (1967)

    Google Scholar 

  67. Holzmüller, W., Jung, P.: Plaste u. Kautschuk. 2, 218 (1955)

    Google Scholar 

  68. Holzmüller, W.: Plaste u. Kautschuk. 17, 2 (1970)

    Google Scholar 

  69. Holzmüller, W.: Plaste u. Kautschuk. 20, 249 (1973)

    Google Scholar 

  70. Müller, F. H., Hellmuth, E.: Koll. Zs. and Zs. f. Polymere. 181, 97 (1962)

    Article  Google Scholar 

  71. Böttger, H., Bryksin, V. V.: phys. stat. sol. (b). 78, 9, 415 (1976); 68, 285 (1975)

    Google Scholar 

  72. O'Dwyer, J. J.: The theory of electrical conductivity and breakdown in solid dielectrics. Oxford 1973

    Google Scholar 

  73. Koppelmann, J., Gieleßen, J.: Koll. Zs. 175, 97 (1961); Zs. für Elektrotechn. u. Ber. Bunsenges. 65, 689 (1961)

    Article  Google Scholar 

  74. Kubat, J.: Archiv für Physik. 25, 285 (1963); 22, 465 (1962)

    Google Scholar 

  75. Eyring, H., Ree, R.: Proc. Nat. Acad. Sci. USA. 41, 118 (1955)

    Google Scholar 

  76. Cole, H., Cole, K. S.: J. Chem. Phys. 9, 341 (1941)

    Article  Google Scholar 

  77. Treloar, L. R. G.: The physics of rubber elasticity. Oxford: University Press 1967

    Google Scholar 

  78. Das, T. P.: Chem. Phys. 25, 896 (1956), 27, 763 (1957)

    Article  Google Scholar 

  79. Hägele, P. C., Pechhold, W.: Koll. Zs. u. Zs. f. Polymere 241, 977 (1970)

    Article  Google Scholar 

  80. Blasenbrey, S., Pechhold, W.: Koll. Zs. u. Zs. f. Polymere 241, 955 (1970)

    Article  Google Scholar 

  81. Wobser, G., Hägele, P. C.: Ber. Bunsenges. 74, 896 (1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Springer-Verlag

About this paper

Cite this paper

Holzmüller, W. (1978). Molecular mobility, deformation and relaxation processes in polymers. In: Polymer Chemistry. Advances in Polymer Science, vol 26. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0022820

Download citation

  • DOI: https://doi.org/10.1007/BFb0022820

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-08677-2

  • Online ISBN: 978-3-540-35896-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics