The formula: A relation? Yes, but a concept too!

  • Ruddy Lelouche
  • Jean-François Morin
Authoring and Development Tools and Techniques
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1108)


This article presents an original type of knowledge modelling in an intelligent tutoring system, which is adapted from entity-relationship models and from semantic and conceptual networks. The knowledge domain is cost engineering. Although the formulæ used in cost engineering problem solving are usually considered as relations between variables, the originality of our approach lies in the use of these formulæ to identify new concepts, the factors, of a more pedagogical nature. The introduction of these concepts should help the student to concentrate either on computations or on economic analysis, and the system to make more accurate and more useful tutoring interventions. Moreover, this concept creation brings to light a hierarchy of intermediate abstraction levels, which can then be used to derive an order of presentation of these concepts, an order of the corresponding prerequisites, and an order of the exercise types. All these should facilitate the student's learning in cost engineering.


Knowledge modelling concept relation computation formula abstraction level concept hierarchy knowledge articulation concept definition concept value concept usage student modelling tutoring 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, John R.: The Architecture of Cognition. Harvard University Press, Cambridge, 1983.Google Scholar
  2. Brodie, Michael L.: John Mylopoulos & Joachim W. Schmidt, On Conceptual Modelling. Springer-Verlag, New York, 1984.Google Scholar
  3. Clancey, William J.: Knowledge-Based Tutoring: The GUIDON Program. The MIT Press, Cambridge (MA), 1987.Google Scholar
  4. Clocksin, William F. & Christopher S. Mellish: Programming in Prolog. Springer-Verlag, Berlin, 1981.Google Scholar
  5. Findler, Nicholas V. (ed.): Associative Networks — Representation and Use of Knowledge by Computers. Academic Press, Orlando (FL), 1979.Google Scholar
  6. Gagné, Ellen D.: The Cognitive Psychology of School Learning. Little, Brown and Company, Boston, 1985.Google Scholar
  7. Galibois, André: Analyse économique en ingénierie, 1re édition révisée. Éditions AGA, Québec, 1993.Google Scholar
  8. Humphreys, Kenneth King: Jelen's Cost and Optimization Engineering. 3rd edition. McGraw-Hill, New York, 1991.Google Scholar
  9. Jelen, Frederic Charles: Cost and Optimization Engineering, 1st edition. McGraw-Hill, New York, 1970.Google Scholar
  10. Johnson, W. Lewis & Elliot M. Soloway, “PROUST: knowledge-based program debugging”. Proceedings of the Seventh International Software Engineering Conference, Orlando, FL, 1984, p. 369–380.Google Scholar
  11. Kowalski, R.: Logic for Problem Solving. North-Holland, Berlin, 1979.Google Scholar
  12. Lénat, D. et al.: Cognitive Economy. Working Paper HPP-79-15, Stanford Heuristic Programming Project. Stanford University (CA), June 1979, 46 pages.Google Scholar
  13. Lelouche, Ruddy: «Apports de l'intelligence artificielle et des sciences cognitives aux systèmes de formation». Revue ICO-Québec — Revue de liaison de la recherche en informatique cognitive des organisations, Numéro thématique sur la formation intelligemment assistée, vol. 3, n∘ 1, printemps 1991, p. 19–27.Google Scholar
  14. Malec, J.: “Knowledge elicitation during dynamic scene description”. ACM-SIGART Newsletter: special issue on knowledge acquisition, n∘. 108, April 1989, p. 162–163.Google Scholar
  15. Malouin, Jacques: Du système expert au tuteur intelligent: application d'un modèle d'apprentissage au développement d'un système d'enseignement de l'algorithmique. Thèse de doctorat, Département de technologie de l'enseignement. Université Laval, Québec, 1993.Google Scholar
  16. Sowa, John F.: Conceptual Structures — Information Processing in Mind and Machine. Addison-Wesley, Reading (MA), 1984.Google Scholar
  17. Sterling, Leon & Ehud Shapiro: The Art of Prolog — Advanced Programming Techniques. The MIT Press, Cambridge (MA), 1986.Google Scholar
  18. Tardif, J.: Pour un enseignement stratégique: l'apport de la psychologie cognitive. Éditions Logiques, Montréal, 1992.Google Scholar
  19. Wenger, Étienne: Artificial Intelligence and Tutoring Systems. Morgan Kaufmann, Los Altos (CA), 1987.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Ruddy Lelouche
    • 1
  • Jean-François Morin
    • 1
  1. 1.Département d'informatiqueUniversité LavalCanada

Personalised recommendations