Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 398))

  • 197 Accesses

Abstract

We have described the status of the lattice gas and lattice Boltzmann methods as a numerical technique. They are now well established in calculating the flow of a simple Navier-Stokes fluid. Any extension of the model, however, such as the inclusion of temperature, multiple species or chemical reactions, involves a major research effort. Much remains to be done here. The capability of these methods in resolving complex geometries is, however, unsurpassed.

This symposium has not, of course, given the final definition of the niche for the application of the lattice gas and lattice Boltzmann methods as numerical tools. Its goal was, by bringing together experts from the different fields, to bring about a discussion of the relative value of the different techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Frisch, U., Hasslacher, B. and Pomeau, Y.: Phys. Rev. Lett. 56 (1986) 1505.

    Google Scholar 

  2. d'Humières, D., Lallemand, P. and Frisch, U.: Europhys. Lett. 2 (1986) 291.

    Google Scholar 

  3. Rothman, D.H. and Keller, J.M.: J. Stat. Phys. 52 (1988) 1119.

    Google Scholar 

  4. Balasubramanian, K., Hayot, F. and Saam, W.F.: Phys. Rev. A 38 (1987) 2248.

    Google Scholar 

  5. Higuera, F.J.: in Discrete Kinetic Theory, Lattice Gas Dynamics and Foundations of Hydrodynamics, R. Monaca ed., World Scientific 1989.

    Google Scholar 

  6. McNamara, G.R. and Zanetti, G.: Phys. Rev. Lett. 81 (1988) 2332.

    Google Scholar 

  7. d'Humières, D., Lallemand, P.: Complex Systems 1 (1987) 599.

    Google Scholar 

  8. Higuera, F.J. and Succi, S.: Europhys. Lett. 8 (1989) 517.

    Google Scholar 

  9. Succi, S., Santangelo, P. and Benzi, R.: Phys. Rev. Lett. 80 (1988) 2738.

    Google Scholar 

  10. Rivet, J.P., Henon, M., Frisch, U. and d'Humières, D.: Europhys. Lett. 7 (1988) 231.

    Google Scholar 

  11. Succi, S., Benzi, R. and Higuera, F.J.: in Lattice Gas Methods for PDE's, Theory, Applications and Hardware, G.D. Doolen ed., Physica D 47 (1991) 219.

    Google Scholar 

  12. Wolfram, S.: J. Stat. Phys.45 (1986) 471.

    Google Scholar 

  13. Frisch, U., d'Humières, D., Hasslacher, B., Lallemand, P., Pomeau, Y. and Rivet, J. P.: Complex Systems 1 (1987) 649. 14. Drubulle, D., Frisch, U., Henon, M. and Rivet, J.-P.: J. Stat. Phys. 59 (1990) 1187.

    Google Scholar 

  14. Zanetti, G.: Phys. Rev. A 40 (1989) 1539.

    Google Scholar 

  15. d'Humières, D., Qian, Y.H. and Lallemand, P.: in Proceedings of the Workshop on Computational Physics and Cellular Automata, Ouro Preto, Brazil, August 1989.

    Google Scholar 

  16. Somers, J.A. and Rem, P.C. in Parallel Computing 1988, Springer Lecture Notes in Computer Science 384, 1989.

    Google Scholar 

  17. Boghosian, B., Taylor, W. and Rothman, D.H.: in Proceedings of Supercomputing '88, 2: Science and Applications, Martin, J.L. and Lundstrom, S.S. eds., IEEE 1989.

    Google Scholar 

  18. Clouqueur, A. and d'Humières, D.: Complex Systems 1 (1987) 585.

    Google Scholar 

  19. Toffoli, T. and Margolus, N.: in Lattice Gas Methods for PDE's, Theory, Applications and Hardware, G.D. Doolen ed., Physica D 47 (1991) 263.

    Google Scholar 

  20. Friedrich, R., Arnal, M. and Unger, F.: in Computational Fluid Dynamics for the Petrochemical Process Industry, Applied Scientific Research 48, 1991

    Google Scholar 

  21. Fyfe, D.E., Oran, E.S. and Fritts, M.J.: J. Comp. Phys. 78 (1988) 349.

    Google Scholar 

  22. Somers, J.A. and Rem, P.C.: in Lattice Gas Methods for PDE's, Theory, Applications and Hardware, G.D. Doolen ed., Physica D 47 (1991) 39.

    Google Scholar 

  23. Rothman, D.H. and Zaleski, S.: Journal de Physique 50 (1989) 2126.

    Google Scholar 

  24. Rothman, D.H.: in Discrete Kinetic Theory, Lattice Gas Dynamics and Foundations of Hydrodynamics, ed. R. Monaco, World Scientific 1989.

    Google Scholar 

  25. Rothman, D.H.: Geophysics 53 (1988) 509.

    Google Scholar 

  26. Chen, S., Diemer, K., Doolen, G.D., Eggert, K., Fu, C., Gutman, S. and Travis, B.J.: in Lattice Gas Methods for PDE'3, Theory, Applications and Hardware, G.D. Doolen ed., Physica D 47 (1991) 97.

    Google Scholar 

  27. Hayot, F.: in Lattice Gas Methods for PDE's, Theory, Applications and Hardware, G.D. Doolen ed., Physica D 47 (1991) 64.

    Google Scholar 

  28. Russell, T.F. and Wheeler, M.F.: in The Mathematics of Reservoir Simulation, Ewing, R.E. ed., SIAM 1983.

    Google Scholar 

  29. Ladd, A.J.C. and Frenkel, D. in Cellular Automata and Modeling of Complex Physical Systems, P. Manneville et al eds., Springer Proceedings in Physics 46 (1989) 242.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag

About this paper

Cite this paper

Verheggen, T., Rem, P., Somers, J. (1992). Introduction. In: Numerical Methods for the Simulation of Multi-Phase and Complex Flow. Lecture Notes in Physics, vol 398. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0022302

Download citation

  • DOI: https://doi.org/10.1007/BFb0022302

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55278-9

  • Online ISBN: 978-3-540-47007-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics