Skip to main content

A survey of the Hénon-Heiles Hamiltonian with applications to related examples

  • Conference paper
  • First Online:
Book cover Stochastic Behavior in Classical and Quantum Hamiltonian Systems

Part of the book series: Lecture Notes in Physics ((LNP,volume 93))

Abstract

This paper surveys some recent techniques and results for Hamiltonian systems in the context of the Hénon-Heiles Hamiltonian. The paper attempts to give some reasonable interpretation of various numerical (computer) results alongside recent mathematical techniques and results presented as they apply to this Hamiltonian. In particular, various computed periodic orbits are identified with geometrically constructed periodic orbits and rigorous conclusions concerning the stability status of the orbit as the energy of the system changes are indicated whenever possible. The paper concludes with a discussion of some related Hamiltonians and suggested computer experiments.

**On leave from Hunter College, C.U.N.Y.

Author's research supported in part by National Research Council of Canada, Grant A8507.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Aizawa, Instability of a classical dynamical system with the negative curvature region. J. Physical Soc. Japan 33, No. 6, (1972), 1693–1696.

    Google Scholar 

  2. V. I. Arnold and A. Avez, “Ergodic Problems of Classical Mechanics,” Benjamin, New York, 1968.

    Google Scholar 

  3. R. Baxter, H. Eiserike, and A. Stokes, A pictorial study of an invariant torus in phase space of four dimensions, in “Ordinary Differential Equations,” (Leonard Weiss, Ed.), 331–349, Academic Press, New York, 1972.

    Google Scholar 

  4. M. V. Berry, Regular and irregular motion, in “A Primer in Nonlinear Mechanics,” (R. Helleman and J. Ford, Eds.), to appear.

    Google Scholar 

  5. G. D. Birkhoff, Nouvelles recherches sur les systemes dynamiques, Memoriae Pont. Acad. Sci. Novi Lyncaei, S. 3, Vol. 1, (1935), 85–216. Reprinted in “Collected Mathematical Papers of George David Birkhoff,” Vol. 2, 530–661, Dover, New York, 1968.

    Google Scholar 

  6. G. D. Birkhoff, Sur le problème restreint des trois corps, Annali Scuola Normale Superiore di Pisa, S. 2, Vol. 5, (1936), 1–42. Reprinted in “Collected Mathematical Papers of George David Birk hoff,” Vol. 2, 668–709, Dover, New York, 1968.

    Google Scholar 

  7. T. Bountis, “Nonlinear Models in Dynamics and Statistical Mechanics,” Thesis, Univ. of Rochester, to appear 1978.

    Google Scholar 

  8. M. Braun, On the applicability of the third integral of motion, J. Differential Equations 13 (1973), 300–318.

    Google Scholar 

  9. T. M. Cherry, The pathology of differential equations, J. Austral. Math. Soc. 1 (1959), 1–16.

    Google Scholar 

  10. T. M. Cherry, Asymptotic solutions of analytic Hamiltonian systems, J. Differential Equations 14 (1968), 142–159.

    Google Scholar 

  11. R. C. Churchill, G. Pecelli, and D. L. Rod, Isolated unstable periodic orbits, J. Differential Equations 17 (1975), 329–348.

    Google Scholar 

  12. R. C. Churchill and D. L. Rod, Pathology in dynamical systems I: General theory, J. Differential Equations 21 (1976), 39–65.

    Google Scholar 

  13. R. C. Churchill and D. L. Rod, Pathology in dynamical systems II: Applications, J. Differential Equations 21 (1976), 66–112.

    Google Scholar 

  14. R. C. Churchill and D. L. Rod, Pathology in dynamical systems III: Analytic Hamiltonians, to appear.

    Google Scholar 

  15. R. C. Churchill, G. Pecelli, S. Sacolick, and D. L. Rod, Coexistence of stable and random motion, Rocky Mt. J. of Math. 7 (1977), 445–456.

    Google Scholar 

  16. C. Conley, On the ultimate behavior of orbits with respect to an unstable critical point (I), J. Differential Equations 5 (1969), 136–158.

    Google Scholar 

  17. C. Conley, Twist mappings, linking, analyticity and periodic solutions which pass close to an unstable periodic solution, in “Topological Dynamics,” (Joseph Auslander, Ed.), W. A. Benjamin, New York, 1968.

    Google Scholar 

  18. G. Contopoulos, Orbits in highly perturbed dynamical systems I. Periodic orbits, Astronom. J. 75 (1970), 96–107.

    Google Scholar 

  19. G. Contopoulos, Orbits in highly perturbed dynamical systems II. Stability of periodic orbits, Astronom. J. 75 (1970), 108–130.

    Google Scholar 

  20. G. Contopoulos, Orbits in highly perturbed dynamical systems III. Nonperiodic orbits, Astronom. J. 76 (1971), 147–156.

    Google Scholar 

  21. R. L. Devaney, Homoclinic orbits in Hamiltonian systems, J. Differential Equations 21 (1976), 431–438.

    Google Scholar 

  22. R. L. Devaney, Reversible diffeomorphisms and flows, Trans. Amer. Math. Soc. 218 (1976), 89–113.

    Google Scholar 

  23. R. L. Devaney, Blue sky catastrophes in reversible and Hamiltonian systems, Indiana Univ. Math. Jour. 26, No. 2, (1977), 247–263.

    Google Scholar 

  24. R. L. Devaney, Transversal homoclinic orbits in an integrable system, to appear in Amer. J. Math.

    Google Scholar 

  25. R. L. Devaney, Non-regularizability of the anisotropic Kepler problem, to appear in J. Differential Equations.

    Google Scholar 

  26. R. L. Devaney, Collision orbits in the anisotropic Kepler problem, Inv. Math. 45 (1978), 221–251.

    Google Scholar 

  27. R. L. Devaney, Subshifts of finite type in linked twist mappings, to appear in Proc. A.M.S.

    Google Scholar 

  28. P. Eberlein, Geodesic flows on negatively curved manifolds I, Ann. of Math. 95 (1972), 492–510.

    Google Scholar 

  29. P. Eberlein, Geodesic flows in negatively curved manifolds II, Trans. Amer. Math. Soc. 178 (1973), 57–82.

    Google Scholar 

  30. C. R. Eminhizer, “Convergent Perturbative and Iterative Methods Applied to the Duffing Equation and Anharmonic Oscillator Systems,” Thesis, Univ. of Rochester, 1975.

    Google Scholar 

  31. C. R. Eminhizer, R.H.G. Helleman, and E. W. Montroll, On a convergent nonlinear perturbation theory without small denominators or secular terms, J. Math. Physics 17, No. 1, (1976), 121–140.

    Google Scholar 

  32. J. Ford, The transition from analytic dynamics to statistical mechanics, Advances in Chemical Physics 24 (1973), 155.

    Google Scholar 

  33. J. Ford, Stochastic behavior in nonlinear oscillator systems, in “Lecture Notes in Physics,” Vol. 28, 204–245, Springer-Verlag, New York, 1974.

    Google Scholar 

  34. J. Ford, The statistical mechanics of classical analytic dynamics, in “Fundamental Problems in Statistical Mechanics,” Vol. 3, (E.D.G. Cohen, Ed.), North-Holland, Amsterdam, 1975.

    Google Scholar 

  35. W. B. Gordon, The existence of geodesics joining two given points, J. Differential Geometry 9 (1974), 443–450.

    Google Scholar 

  36. F. G. Gustavson, On constructing formal integrals of a Hamiltonian system near an equilibrium point, Astronomical J. 71, No. 8, (1966), 670–686.

    Google Scholar 

  37. P. Hartman, “Ordinary Differential Equations,” Wiley, New York, 1964.

    Google Scholar 

  38. R.H.G. Helleman, On the iterative solution of a stochastic mapping, in “Statistical Mechanics and Statistical Methods, Theory and Applications,” (U. Landman, Ed.), 343–370, Plenum Pub. Co., New York, 1977.

    Google Scholar 

  39. R.H.G. Helleman and E. W. Montroll, On a nonlinear perturbation theory without secular terms I: Classical coupled anharmonic oscillators, Physica 74 (1974), 22–74.

    Google Scholar 

  40. M. Hénon and C. Heiles, The applicability of the third integral of motion; some numerical experiments, Astronom. J. 69 (1964), 73–79.

    Google Scholar 

  41. J. Henrard, Proof of a conjecture of E. Strómgren, Celestial Mechanics 7 (1973), 449–457.

    Google Scholar 

  42. W. Klingenberg, Riemannian manifolds with geodesic flow of Anosov type, Ann. of Math. 99 (1974), 1–13.

    Google Scholar 

  43. M. Kummer, On resonant nonlinearly coupled oscillators with two equal frequencies, Commun. Math. Phys. 48 (1976), 53–79.

    Google Scholar 

  44. M. Kummer, An interaction of three resonant modes in a nonlinear lattice, J. Math. Analysis and Applications 52 (1975), 64–104.

    Google Scholar 

  45. M. Kummer, On resonant classical Hamiltonians with two equal frequencies, Comm. Math. Phys. 58 (1978), 85–112.

    Google Scholar 

  46. D. Laugwitz, “Differential and Riemannian Geometry,” Academic Press, New York, 1965.

    Google Scholar 

  47. W. S. Loud, Stability regions for Hill's equations, J. Differential Equations 19 (1975), 226–241.

    Google Scholar 

  48. G. H. Lunsford and J. Ford, On the stability of periodic orbits for nonlinear oscillator systems in regions exhibiting stochastic behavior, J. Math. Phys. 13 (1972), 700–705.

    Google Scholar 

  49. W. Magnus and S. Winkler, “Hill's Equation,” Wiley-Interscience, New York, 1966.

    Google Scholar 

  50. L. Markus and K. R. Meyer, “Generic Hamiltonian Dynamical Systems are neither Integrable nor Ergodic,” Memoirs Amer. Math. Soc., No. 144, 1974.

    Google Scholar 

  51. J. Milnor, “Morse Theory,” Annals of Mathematics Studies,No. 51, Princeton University Press, N.J., 1963.

    Google Scholar 

  52. E. Montroll and R.H.G. Helleman, On a nonlinear perturbation theory without secular terms, in “Topics in Statistical Mechanics and Biophysics: A Memorial to Julius L. Jackson,” (R. A. Piccirelli, Ed.), 75–110, American Institute of Physics, New York, 1976.

    Google Scholar 

  53. J. Moser, On the generalization of a theorem of A. Liapounoff, Commun. Pure Appl. Math. 11 (1958), 257–271.

    Google Scholar 

  54. J. Moser, “Lectures on Hamiltonian Systems,” Memoirs Amer. Math. Soc., No. 81, (1968), 1–60.

    Google Scholar 

  55. J. Moser, “Stable and Random Motions in Dynamical Systems,” Annals of Mathematics Studies,No. 77, Princeton University Press, Princeton, N.J., 1973.

    Google Scholar 

  56. J. Moser, Stability theory in celestial mechanics, in “The Stability of the Solar System and of Small Stellar Systems,” (Y. Kozai, Ed.), 1–9, D. Riedel, Boston, 1974.

    Google Scholar 

  57. J. Moser, Periodic orbits near an equilibrium and a theorem of A. Weinstein, Commun. Pure Applied Math. 29 (1976), 727–747.

    Google Scholar 

  58. V. V. Nemytskii and V. V. Stepanov, “Qualitative Theory of Differential Equations,” Princeton University Press, Princeton, N.J., 1960.

    Google Scholar 

  59. B. O'Neill, “Elementary Differential Geometry,” Academic Press, New York, 1966.

    Google Scholar 

  60. G. Pecelli and E. S. Thomas, An example of elliptic stability with large parameters: Lamb's equation and the Arnold-Moser-Rüssmann criterion, to appear in Quart. of Applied Math.

    Google Scholar 

  61. G. Pecelli, D. L. Rod, and R. C. Churchill, Stability transitions in Hamiltonian systems, to appear.

    Google Scholar 

  62. R. C. Robinson, Generic properties of conservative systems, Amer. J. Math. 92 (1970), 562–603.

    Google Scholar 

  63. R. C. Robinson, Generic properties of conservative systems II, Amer. J. Math. 92 (1970), 897–906.

    Google Scholar 

  64. D. L. Rod, Pathology of invariant sets in the Monkey saddle, J. Differential Equations 14 (1973), 129–170.

    Google Scholar 

  65. D. L. Rod, G. Pecelli, and R. C. Churchill, Hyperbolic periodic orbits, J. Differential Equations 24 (1977), 329–348.

    Google Scholar 

  66. D. L. Rod, G. Pecelli, and R. C. Churchill, Addendum to “Hyperbolic Periodic Orbits,” J. Differential Equations 28 (1978), 163–165.

    Google Scholar 

  67. H. Rüssmann, Über die Normalform analytischer Hamiltonscher Differentialgleichungen in der Nähe einer Gleichgewichtslösung, Math. Annalen 169 (1967), 55–72.

    Google Scholar 

  68. C. L. Siegel and J. Moser, “Lectures on Celestial Mechanics,” Springer-Verlag, New York, 1971.

    Google Scholar 

  69. A. Weinstein, Lagrangian submanifolds and Hamiltonian systems, Ann. of Math. 98 (1973), 377–410.

    Google Scholar 

  70. A. Weinstein, Normal modes for non-linear Hamiltonian systems, Inv. Math. 20 (1973), 47–57.

    Google Scholar 

  71. B. Barbanis, On the isolating character of the “third” integral in a resonance case, Astronom. J. 71 (1966), 415–424.

    Google Scholar 

  72. R. L. Devaney, Homoclinic orbits to hyperbolic equilibria, Annals of the New York Academy of Sciences, to appear.

    Google Scholar 

  73. R. W. Easton, Homoclinic phenomena in Hamiltonian systems with several degrees of freedom, to appear in J. Differential Equations.

    Google Scholar 

  74. R. McGehee and K. Meyer, Homoclinic points of area preserving diffeomorphisms, Amer. J. Math. 96 (1974), 409–421.

    Google Scholar 

  75. K. Meyer, Generic bifurcation of periodic points, Trans. Amer. Math. Soc. 149 (1970), 95–107.

    Google Scholar 

  76. K. Meyer, Generic bifurcation in Hamiltonian systems, in “Dynamical Systems-Warwick 1974,” (Anthony Manning, Ed.), 62–70, Lecture Notes in Mathematics, Vol. 468, Springer-Verlag, New York, 1975.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Giulio Casati Joseph Ford

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Springer-Verlag

About this paper

Cite this paper

Churchill, R.C., Pecelli, G., Rod, D.L. (1979). A survey of the Hénon-Heiles Hamiltonian with applications to related examples. In: Casati, G., Ford, J. (eds) Stochastic Behavior in Classical and Quantum Hamiltonian Systems. Lecture Notes in Physics, vol 93. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0021739

Download citation

  • DOI: https://doi.org/10.1007/BFb0021739

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-09120-2

  • Online ISBN: 978-3-540-35510-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics