Skip to main content

The geometry of elastic waves propagating in an anisotropic elastic medium

  • Conference paper
  • First Online:
Geometric and Quantum Aspects of Integrable Systems

Part of the book series: Lecture Notes in Physics ((LNP,volume 424))

  • 225 Accesses

Abstract

We evaluate the fundamental solution of the hyperbolic system describing the generation and propagation of elastic waves in an anisotropic solid by studying the homology of the so-called slowness hypersurface defined by the characteristic equation. Our starting point is the Herglotz-Petrovsky-Leray integral representation of the fundamental solution. We find an explicit decomposition of the latter solution into integrals over vanishing cycles associated with the isolated singularities on the slowness surface. As is well known in the theory of isolated singularities, integrals over vanishing cycles satisfy a system of differential quations known as Picard-Fuchs equations. We discuss a method to obtain these equations explicitly. Subsequently, we use these to analyse the asymptotic behavior of the fundamental solution near wave front singularities in three dimensions. Our work sheds new light on how to compute the so-called Cagniard-De Hoop contour which is used in numerical integration schemes to obtain the full time behaviour of the fundamental solution for a given direction of propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V.I. Al'shits, J. Lothe, Elastic waves in triclinic crystals. I. General theory and the degeneracy problem, Kristallografiya 24 (1979) 672–683

    Google Scholar 

  2. V.I. Al'shits, J. Lothe, Elastic waves in triclinic crystals. II. Topology of polarization fields and some general theorems, Kristallografiya 24 (1979) 683–693.

    Google Scholar 

  3. V.I. Arnold, Remarks on the stationary phase method and the Coxeter numbers, Russ. Math. Surv. 28, No. 5 (1973) 19–48.

    Article  Google Scholar 

  4. V.I. Arnold, Wave front evolution and equivariant Morse lemma, Comm. Pure and Appl. Math. 29, 557–582, (1976).

    Google Scholar 

  5. V.I. Arnold, Surfaces defined by hyperbolic equations, Math. Zam. 44 (1988) 3–18.

    Google Scholar 

  6. V.I. Arnold, On the interior scattering of waves defined by hyperbolic variational principles, Journl. Geom. Phys. 5 (1988) 305–315.

    Article  Google Scholar 

  7. V.I. Arnold, S.M. Gusein-Zade, A.N. Varchenko, Singularities of Differentiable Maps Vol. I and II, Birkhäuser, Boston, 1988.

    Google Scholar 

  8. V.I. Arnold, Singularities of Caustics and Wave Fronts, Kluwer Academic Publ., Dordrecht, 1990.

    Google Scholar 

  9. M.F. Atiyah, R. Bott, L. Gårding, Lacunae for hyperbolic differential operators with constant coefficients I and II, Acta. Math. 124 (1970) 109–189, and Acta Math. 131 (1973) 145–206

    Google Scholar 

  10. L. GÃ¥rding, Sharp fronts of paired oscillatory integrals, Publ. Res. Int. Math. Sci. 12 (1976).

    Google Scholar 

  11. B.A. Auld, Acoustic fields and waves in solids, John Wiley, New York, 1973.

    Google Scholar 

  12. R. Burridge, Lacunas in two dimensional wave propagation, Proc. Camb. Phil. Soc. 63 (1967) 819–825

    Google Scholar 

  13. R. Burridge, The singularity on the plane lids of the wave surface of elastic media with cubic symmetry, Quart. Journ. Mech. Appl. Math. XX (1967) 41–56

    Google Scholar 

  14. R. Burridge, Lamb's problem for an anisotropic half-space, Quart. Journ. Mech.Appl. Math. XXIV (1971) 81–98.

    Google Scholar 

  15. R. Burridge, P. Chadwick, A.N. Norris, Fundamental elastodynamic solutions for anistropic media with ellipsoidal slowness surfaces, submitted to the Proceedings of the Royal Society (1992).

    Google Scholar 

  16. L. Cagniard, Réflexion et réfraction des ondes séismiques progressives, Gauthes-Villars, Paris, 1939.

    Google Scholar 

  17. S. Crampin, M. Yedlin, Shear wave singularities of wave propagation in anisotropic media, J. Geophys. 49 (1981) 43–46.

    Google Scholar 

  18. G.F.D. Duff, The Cauchy problem for elastic waves in an anisotropic medium, Phil. Trans. R. Soc. A. 252 (1960) 249–273.

    Google Scholar 

  19. J. J. Duistermaat, Oscillatory integrals, Lagrange Immersions and Unfolding of singularities, Commun. Pure Appl. Math. 27, No. 2 (1974) 207–281

    Google Scholar 

  20. M.V. Fedoryuk, The stationary phase method and pseudodifferential operators, Russ. Math. Surv. 26, No. 1 (1972) 65–115

    Article  Google Scholar 

  21. A.S. Mishchenko, V.E. Shatalov, B. Yu. Sternin, Lagrangian Manifolds and the Maslov Operator, Springer, New York, 1990

    Google Scholar 

  22. J.-M. Kendall, C.J. Thomson, Maslov ray summation, pseudo-caustics, Lagrangian equivalence and transient seismic wave forms, submitted to Geophys. J. Int. (1992).

    Google Scholar 

  23. A.G. Every, General closed-form expressions for acoustic waves in elastically anistropic solids, Phys. Rev B 22 (1980) 1746–1760.

    Article  Google Scholar 

  24. I.M. Gel'fand, G.E. Shilov, Generalized functions, Vol. I, Academic Press, New York, 1964.

    Google Scholar 

  25. P.A. Griffiths, On the periods of certain rational integrals, I, Ann. of math. 90 (1969) 460–495.

    Google Scholar 

  26. A.T. de Hoop, A modification of Cagniard's method for solving seismic pulse problems, Appl. Sci. Res. B8 (1960) 349–356.

    Google Scholar 

  27. P. Hubral, M. Tygel, Transient response from a planar acoustic interface by a new point-source decomposition into plane waves, Geoph. 50 (1985) 766–774.

    Article  Google Scholar 

  28. J.A. Hudson, Wavespeed and attenuation of elastic waves in material containing cracks, G.J.R.A.S., 64 (1981) 133–150.

    Google Scholar 

  29. J.H.M.T. van der Hijden, Propagation of transient elastic waves in stratified anisotropic media, North Holland, Amsterdam, 1987.

    Google Scholar 

  30. F. John, Partial differential equations, Springer-Verlag, New York, 1982.

    Google Scholar 

  31. N. Katz, Differential equations for periods, Publ. Math. I.H.E.S. 35 (1968) 71.

    Google Scholar 

  32. J. Leray, Hyperbolic differential equations, The Institute for Advanced Study, Princeton N.J., 1952.

    Google Scholar 

  33. W. Lerche, D.-J. Smit, N.P. Warner, Differential equations for periods and flat coordinates in two-dimensional topological matter theories, Nucl. Phys. B 372 (1991) 87

    Article  Google Scholar 

  34. D.R. Morrison, Picard-Fuchs equations and mirror maps for hypersurfaces, in: Essays on Mirror Manifolds, ed. S-T. Yau, International Press Honkong, 1992.

    Google Scholar 

  35. D. Ludwig, Exact and asymptotic solutions of the Cauchy problem, Comm. Pure Appl. Math. 13 (1960) 473–508.

    Google Scholar 

  36. B. Malgrange, Intégrale asymptotique et monodromie, Ann. Sci. École Normale Supp. 4, No. 7 (1974) 405–430.

    Google Scholar 

  37. J. Milnor, Singular Points of Complex Hypersurfaces, Princeton University Press, Princeton N.J., 1968.

    Google Scholar 

  38. M.J.P. Musgrave, On the propagation of elastic waves in aelotropic media I, Proc. R. Soc. Lond. A 226 (1954) 339; idem II, Proc. R. Soc. Lond. A 226 (1954) 356

    Google Scholar 

  39. G.F. Miller, M.J.P. Musgrave, On the propagation of elastic waves in aelotropic media III, Proc. R. Soc. Lond. A 236 (1956) 352

    Google Scholar 

  40. M.J.P. Musgrave, Crystal acoustics, Holden Day, San Francisco, 1970.

    Google Scholar 

  41. M.J.P. Musgrave, On an elastodynamic classification of orthorhombic media, Proc. R. Soc. Lond. A 374 (1981) 401–429

    Google Scholar 

  42. M.J.P. Musgrave, Acoustic axes in orthorhombic media, Proc. R. Soc. Lond. A 401 (1985) 131–143.

    Google Scholar 

  43. D. Nichols, F. Muir, M. Schoenberg, Expanded Abstracts 59th Ann. Mtg. SEG (1989) 471.

    Google Scholar 

  44. A.N. Norris, A theory of pulse propagation in anisotropic elastic solids, Wave Motion 9 (1987) 509–532.

    Article  Google Scholar 

  45. R.G. Payton, Elastic wave propagation in transversely isotropic media, Martinus Nijhoff Publishers, The Hague, 1983.

    Google Scholar 

  46. R.G. Payton, Int. J. Engng. Sci. 13, 183 (1975).

    Article  Google Scholar 

  47. R.G. Payton, Instituto Lombardo, (Rend. Sci), A 108, 684 (1974).

    Google Scholar 

  48. I. Petrovsky, On the diffusion of waves and the lacunas for hyperbolic equations, Math. Sbo. 17 (59) (1945) 289–370.

    Google Scholar 

  49. M. Riesz, L-intégrale de Riemann-Liouville et le problem de Cauchy, Acta Math. 81 (1949) 1–223.

    Google Scholar 

  50. G. Salmon, Geometry of three dimensions, Hodges, Foster and Figgis, Dublin, 1882.

    Google Scholar 

  51. P.M. Shearer, C.H. Chapman, Ray tracing in azimutally anisotropic media — I. Results for models of aligned cracks in the upper crust, G.J.R.A.S. 96 (1989) 51–64; idem — II. Quasi-shear wave coupling, G.J.R.A.S. 96 (1989) 65–83.

    Google Scholar 

  52. M. Schoenberg, F. Muir, A calculus for finely layered anistropic media, Geoph. 54 (1989) 581–589

    Article  Google Scholar 

  53. J. Hood, M Schoenberg, NDE of fracture-induced anisotropy, Review of Progress in Quantitative Nondestructive Evaluation, 2101–2108, Plenum Press, New York, 1992.

    Google Scholar 

  54. D.-J. Smit, M.V. de Hoop, The geometry of the hyperbolic system for an anisotropic perfectly elastic medium, Shell Research preprint, Schlumberger Cambridge Research preprint (1993).

    Google Scholar 

  55. A. Sommerfeld, Über die Ausbreitung der Wellen in der drahtlosen Telegraphie, Ann. Physik 28 (1909) 665–737

    Google Scholar 

  56. H. Weyl, Ausbreitung elektromagnetischer Wellen über einem ebenen Leiter, Ann. Physik 60 (1919) 481–500.

    Google Scholar 

  57. V.A. Vasil'ev, Sharpness and the local Petrovskii condition for strictly hyperbolic operators with constant coefficients, Math. USSR Izv. 28 (1987) 233–273.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

G. F. Helminck

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag

About this paper

Cite this paper

Smite, DJ., de Hoop, M.V. (1993). The geometry of elastic waves propagating in an anisotropic elastic medium. In: Helminck, G.F. (eds) Geometric and Quantum Aspects of Integrable Systems. Lecture Notes in Physics, vol 424. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0021445

Download citation

  • DOI: https://doi.org/10.1007/BFb0021445

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57365-4

  • Online ISBN: 978-3-540-48090-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics