Skip to main content

Biological flow in deformable vessels

  • Conference paper
  • First Online:
Advances in Fluid Mechanics

Part of the book series: Lecture Notes in Physics ((LNP,volume 148))

  • 169 Accesses

Abstract

The two examples concerning blood flow illustrates the coupling of fluid and solid mechanics which is a usual feature of biomechanics. Future progress in biomechanics needs new knowledge on the mechanical properties of biological fluids and solids. We emphasized especially the need for constitutive equations for the active contraction of muscles in single twitches. The mathematical description of growth and resorption of tissues as functions of stress and strain, and of mass transport in the tissues are the other two frontiers to be conquered. On the methodology side, we believe that numerical analysis will be the order of the day, but simplifications should be sought through biological observations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cokelet, G.R.: The rheology of human blood. In Biomechanics: Its Foundations and Objectives, (Fung, Perrone, and Anliker, eds.), Prentice-Hall, Englewood Cliffs, New Jersey (1972), pp. 63–103.

    Google Scholar 

  2. Fung, Y.C.: Biomechanics: Mechanical Properties of Biological Materials, Springer-Verlag, New York. In press.

    Google Scholar 

  3. Evans, E.A., Skalak, R.: Mechanics and Thermodynamics of Biomembranes. Critical Reviews in Bioengineering, CRC Press, Boca Raton, Florida, 3, (1979).

    Google Scholar 

  4. Fung, Y.C., Fronek, K., Patitucci, P.: On pseudo-elasticity of arteries and the choice of its mathematical expression. American Journal of Physiology, 237, (1979), pp. H620–H631.

    PubMed  Google Scholar 

  5. Patel, D.J., Vaishnav, R.N.: The rheology of large blood vessels. In Cardiovascular Fluid Dynamics, (D.H. Bergel, ed.), Academic Press, New York, 2, (1972), pp. 1–62.

    Google Scholar 

  6. Lanir, Y., Fung, Y.C.: Two-dimensional mechanical properties of rabbit skin — II. Experimental results. Journal of Biomechanics, 7, (1974), pp. 171–182.

    PubMed  Google Scholar 

  7. Tong, P., Fung, Y.C.: The stress-strain relationship for the skin. Journal of Biomechanics, 9, (1976), pp. 649–657.

    Article  PubMed  Google Scholar 

  8. Vawter, D.L., Fung, Y.C., West, J.B.: Elasticity of excised dog lung parenchyma. Journal of Applied Physiology, 45, (1978), pp. 261–269.

    PubMed  Google Scholar 

  9. Fung, Y.C., Tong, P., Patitucci, P.: Stress and strain in the lung. Journal of Engineering Mechanics, 104, (1978), pp. 201–223.

    Google Scholar 

  10. Vawter, D.L., Fung, Y.C., West, J.B.: Constitutive equation of lung tissue elasticity. Journal of Biomechanical Engineering, Transactions of ASME, 101, (1979), pp. 38–45.

    Google Scholar 

  11. Hoppin, F.G., Jr., Lee, G.C., Dawson, S.V.: Properties of lung parenchyma in distortion. Journal of Applied Physiology, 39, (1975), pp. 742–751.

    PubMed  Google Scholar 

  12. Lee, G.C., Frankus, A.: Elasticity properties of lung parechyma derived from experimental distortion data. Biophysical Journal, 15, (1975), pp. 481–493.

    Google Scholar 

  13. Brady, A.J.: Mechanical properties of cardiac fibers. In handbook of Physiology, Sec. 2, The Cardiovascular System, Vol. 1, Heart (R.M. Berne, ed.), American Physiological Society, Bethesda, Maryland, (1979), pp. 461–474.

    Google Scholar 

  14. Fung, Y.C., Sobin, S.S.: Theory of sheet flow in the lung alveoli. Journal of Applied Physiology, 26, (1969), pp. 472–488.

    PubMed  Google Scholar 

  15. Sobin, S.S., Tremer, H.M., Fung, Y.C.: Morphometric basis of the sheet-flow concept of the pulmonary alveolar microcirculation in the cat. Circulation Research, 26, (1970), pp. 397–414.

    PubMed  Google Scholar 

  16. Fung, Y.C., Sobin, S.S.: Elasticity of the pulmonary alveolar sheet. Circulation Research, 30, (1972), pp. 451–469.

    PubMed  Google Scholar 

  17. Sobin, S.S., Fung, Y.C., Tremer, H., Rosenquist, T.H.: Elasticity of the pulmonary interalveolar microvascular sheet in the cat. Circulation Research, 30, (1972), pp. 440–450.

    PubMed  Google Scholar 

  18. Rosenquist, T.H., Bernick, S., Sobin, S.S., Fung, Y.C.: The structure of the pulmonary interalveolar microvascular sheet. Microvascular Research, 5, (1973), pp. 199–212.

    Article  PubMed  Google Scholar 

  19. Evans, E., Fung, Y.C.: Improved measurements of the erythrocyte geometry. Microvascular Research, 4 (1972), pp. 335–347.

    Article  PubMed  Google Scholar 

  20. Fung, Y.C.: Theoretical considerations of the elasticity of red cells and small blood vessels. Federation Proceedings, 25, (1966), pp. 1761–1772.

    PubMed  Google Scholar 

  21. Yen, R.T., Fung, Y.C.: Model experiments on apparent blood viscosity and hematocrit in pulmonary alveoli. Journal of Applied Physiology, 35, 4, (1973), pp. 510–517.

    PubMed  Google Scholar 

  22. Fung, Y.C.: Studies on the blood flow in the lung. In Proceedings of the Second Canadian National Congress of Applied Mechanics, Waterloo, Canada, May 20–23, (1969), pp. 433–454.

    Google Scholar 

  23. Fung, Y.C.: Biorheology of soft tissues. Biorheology, 10, (1973), pp. 139–155.

    PubMed  Google Scholar 

  24. Fung, Y.C., Sobin, S.S.: Pulmonary alveolar blood flow. Circulation Research, 30, (1972), pp. 470–490.

    PubMed  Google Scholar 

  25. Fung, Y.C., Sobin, S.S.: Pulmonary alveolar blood flow. Bioengineering Aspects of Lung Biology, (J.B. West, ed.) Marcel Dekker Inc., New York, (1977), pp. 267–358.

    Google Scholar 

  26. Fung, Y.C.: Theoretical pulmonary microvascular impedance. Annals of Biomedical Engineering, 1, (1972), pp. 221–245.

    PubMed  Google Scholar 

  27. Fung, Y.C.: Fluid in the interstitial space of the pulmonary alveolar sheet. Microvascular Research, 7, (1974), pp. 89–113.

    Article  PubMed  Google Scholar 

  28. West, J.: Ventilation/blood flow and gas exchange. 2nd Ed., F. Davis, Philadelphia (1970).

    Google Scholar 

  29. Permutt, S., Bromberger-Barnea, B., Bane, H.N.: Alveolar pressure, pulmonary venous pressure and the vascular waterfall. Medica Thoracic, 19, (1962), pp. 239–260.

    Google Scholar 

  30. Dawson, S.V., Elliott, E.A.: Wave-speed limitation on expiratory flow — a unifying concept. Journal of Applied Physiology, 43, (1977), pp. 498–518.

    PubMed  Google Scholar 

  31. Shapiro, A.H.: Steady flow in collapsible tubes. Transations of the ASME, Journal of Biomechanical Engineering, 99 (Ser. K), (1977), pp. 126–147.

    Google Scholar 

  32. Pedley, T.J.: Mechanics of the arterial blood flow. Oxford University Press, London (1980).

    Google Scholar 

  33. Wild, Rosemary, PedIey, T.J., Riley, D.S.: Viscous flow in collapsible tubes of slowly-varying elliptical cross-section. J. Fluid Mech. 81, (1977), pp. 273–294.

    Google Scholar 

  34. Sobin, S.S., Lindal, R.G., Fung, Y.C., Tremer, H.M.: Elasticity of the smalles noncapillary pulmonary blood vessels in the cat. Microvascular Research, 15, (1978), pp. 57–69.

    Article  PubMed  Google Scholar 

  35. Sobin, S.S., Fung, Y.C., Lindal, R.G., Tremer, H.M., Clark, L.: Topologyof pulmonary arterioles, capillaries, and venules in the cat. Microvascular Research, 19, (1980), pp. 217–233.

    Article  PubMed  Google Scholar 

  36. Sobin, S.S.: The architecture and function of the microvasculature. In Biomechanics, Proc. ASME Meeting,Nov. 30, 1966. ASME, New York (1966), pp. 132–150.

    Google Scholar 

  37. Yen, R.T., Foppiano, L.: Elasticity of small pulmonary veins in the cat. Journal of Biomechanical Engineering. In Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Egon Krause

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag

About this paper

Cite this paper

Fung, Y.C. (1981). Biological flow in deformable vessels. In: Krause, E. (eds) Advances in Fluid Mechanics. Lecture Notes in Physics, vol 148. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0021341

Download citation

  • DOI: https://doi.org/10.1007/BFb0021341

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-11162-7

  • Online ISBN: 978-3-540-38635-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics