Skip to main content

Thermal conductivity of heterophase polymer compositions

  • Chapter
  • First Online:

Part of the book series: Advances in Polymer Science ((POLYMER,volume 119))

Abstract

This document is a review of the important aspects of the thermal conductivity of filled polymer compositions. Included in this review is an analysis of the various theories developed to model the behavior of heterogeneous two phase systems. A number of second order models were found to provide good estimates of actual data for composites filled with spherical and irregularly shaped particles. In those cases where the models and data disgreed, it was usually because the packing arrangements in the real systems did not match the assumed packing arrangements in the models. This usually occurred at high filler volume fractions where filler packing depends on mixing, particle size and size distribution, and molding considerations. Similar disparities between real composite systems and models for flake and fiber filled composites made analysis of models for such systems difficult to assess. Experimental methods were reviewed, with the inclusion of the more recently developed unsteady state techniques. Finally, discussion is presented on the use of thermally conductive compositions in heat exchangers where the thermal conductivity is of primary importance to the performance of the device.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

b:

parameter in Eq. (18) defined in Eq. (19)

d:

constant in Eqs. (5, 8, 9, 11, 12 and 18)

kc :

thermal conductivity of a two phase composite

kf :

thermal conductivity of the filler material

km :

thermal conductivity of the matrix material

l:

fiber length

l:

wire strip length

n:

power law exponent in Eq. (20)

q:

heat flux

q′:

rate of heat generated per length of wire in line source technique

r:

radial distance from line source

t:

time

t1 :

time 1

t2 :

time 2

x:

distance

xo :

material thickness

Δx:

change in distance

A:

cross-sectional area

A:

coefficient in Eq. (15)

An :

summation parameter in Eq. (6)

A1 :

parameter defined in Eq. (7)

A2 :

parameter defined in Eq. (8)

A3 :

parameter defined in Eq. (9)

B:

coefficient in Eq. (15), defined in Eq. (17)

Bn :

summation parameter in Eq. (10)

C1 :

parameter in Eq. (20) related to effect of filler on crystallinity of polymer

C:

parameter in Eq. (20) related to critical structural concentration of filler particles

Cp :

specific heat

D:

fiber diameter

E:

modulus

F:

force

H:

parameter in Eq. (34), defined in Eq. (35)

J:

parameter in Eq. (30), defined in Eq. (31)

L:

effective diameter of a flake

N:

coefficient in Eq. (13)

Q:

rate of heat flow

R:

line resistance

S:

coefficient in Eqs. (14, 25)

S11 :

parameter in Eq. (30), defined in Eq. (32)

S33 :

parameter in Eq. (30), defined in Eq. (33)

T:

temperature

T0 :

initial sample temperature

T1 :

temperature at time t1

T2 :

temperature at time t2

Ti :

constant surface temperature in Eq. (39)

V:

average ac line voltage

V3, 1 :

average rms voltage at harmonic frequency 3ω1

V3, 2 :

average rms voltage at harmonic frequency 3ω2

X:

effective thickness of a flake

β:

parameter in Eq. (11), defined in Eq. (12)

ε:

strain

φc :

critical volume fraction for interparticle network formation

φf :

volume fraction of filler phase

φm :

volume fraction of matrix phase

φmax :

maximum packing fraction

ρ:

density

σ:

stress

ψ:

parameter in Eq. (15), defined in Eq. (16)

ω:

current frequency in radians/sec

6 References

  1. Mottram JT (1992) Material Design 13:221

    Google Scholar 

  2. Progelhof RC, Throne JL, Reutsch RR (1976) Polym Engr Sci 16:615

    Google Scholar 

  3. Bigg DM (1986) Polym Comp 7:125

    Google Scholar 

  4. Torquado S (1987) Reviews in Chem Engr 4 (3&4):151

    Google Scholar 

  5. Mottram JT, Taylor R (1991) In: Lee M (ed) International encyclopedia of composites, vol 5, VCH, New York, p 476

    Google Scholar 

  6. Segre G, Silberberg A (1962) J Fluid Mech 14:115

    Google Scholar 

  7. Karnis A, Goldsmith HL, Mason SG (1961) J Colloid Interfacial Sci 22:531

    Google Scholar 

  8. Sahimi M, Scriven LE, Davis HT (1984) J Phys C: Solid State Phys 17: 1941

    Google Scholar 

  9. Kutcherov V, Chernoutsan A (1993) J Appl Phys 73(5):2259

    Google Scholar 

  10. Shah N, Ottino JM (1986) Chem Engr Sci, 41:283

    Google Scholar 

  11. Bruggeman DAG (1935) Ann Phys 24: 636

    Google Scholar 

  12. Gurland J (1966) Trans Met Soc AIME, 236:6423

    Google Scholar 

  13. Bigg DM (1984) Adv Polym Tech 4:255

    Google Scholar 

  14. Torquado S (1985) J Appl Phys 58:3790

    Google Scholar 

  15. Torquado S (1984) J Chem Phys 81:5079

    Google Scholar 

  16. Hashin Z, Shtrikman S (1962) J Appl Phys 33:1514

    Google Scholar 

  17. Hamilton RL, Crosser OK (1962) Ind Engr Chem Fund 1:187

    Google Scholar 

  18. Hatta H, Taya M (1985) J appl Phys 58(7):2478

    Google Scholar 

  19. Eshelby JD (1957) Proc R Soc London A241:376

    Google Scholar 

  20. Nielsen LE (1974) Ind Engr Chem Fund 13:17

    Google Scholar 

  21. Agari Y, Uno T (1986) Jour Appl. Polym Sci 32:5705

    Google Scholar 

  22. Agari Y, Tanaka M, Nagai S (1987) Jour Appl Polym Sci 34:1429

    Google Scholar 

  23. Agari Y, Ueda A, Tanaka M, Nagai S (1990) Jour Appl Polym Sci 40:929

    Google Scholar 

  24. Agari Y, Ueda A, Nagai S (1991) Jour Appl Polym Sci 43:1117

    Google Scholar 

  25. Agari Y, Ueda A, Nagai S (1993) Jour Appl Polym Sci 49:1625

    Google Scholar 

  26. Delmonte J (1981) “Technology of Carbon and Graphite Fiber Composites”, Van Nostrand Reinhold, New York

    Google Scholar 

  27. Hatta H, Taya M, Kulacki FA, Harder JF (1992) J Compos Mater 26:612

    Google Scholar 

  28. Bigg DM (1986) “Metal-Filled Polymers”, ed. Bhattacharya SK, Marcel Dekker, New York, 615

    Google Scholar 

  29. Fletcher LS, Cerza MR, Boysen RL (1975) Progree Astronaut Aeronaut 49:371

    Google Scholar 

  30. Bird RB, Stewart WE, Lightfoot EN (1960) “Transport Phenomena”, J Wiley & Sons New York

    Google Scholar 

  31. Hands D (1977) Rubber Chem Technol 50:480

    Google Scholar 

  32. Lobo H, Newman R (1990) “SPE Technical Papers”, XXXVI 862

    Google Scholar 

  33. Cahill DG, Pohl RO (1987) Phys Rev B 35(8):4067

    Google Scholar 

  34. Birge NO, Nagel SR (1985) Phys Rev Lett 54:2674

    Google Scholar 

  35. Frank R, Drach V, Fricke J (1993) Rev Sci Instrum 64:760

    Google Scholar 

  36. Bigg DM, Stickford GH, Talbert SG (1989) Polym Engr Sci 29:1111

    Google Scholar 

  37. Sullivan HF, Wright JL (1982) “Symposium on Condensing Heat Exchangers”, Atlanta GA (Mar 3–4)

    Google Scholar 

  38. Mesloh RE (1986) “Industrial Heat Exchanger”, (ed. Hayes AJ, Liang WW, Richlen SL, Tabb ES), ASM Publications New York

    Google Scholar 

  39. Paschke LF (1984) Chem Engr Prog 80:70

    Google Scholar 

  40. Nieberlein VA (1978) IEEE Trans Comp Hybrid Manuf Tech CHMT-1 172

    Google Scholar 

  41. Nieberlein VA, Steverding B (1977) J Mater Sci 12:1685

    Google Scholar 

  42. de Araujo FFT, Rosenberg HM (1976) J Phys D: Appl Phys 9:665

    Google Scholar 

  43. de Araujo FFT, Garrett KW, Rosenberg HM (1976) ICCM Proc Intl Conf Compos Mater 2:568

    Google Scholar 

  44. de Araujo FFT, Rosenberg HM (1976) NTIS AD-A024963

    Google Scholar 

  45. de Vera AL, Streider W (1977) J Phys Chem 81:1783

    Google Scholar 

  46. Sundstrom DW, Lee Y (1972) J Appl Polym Sci 16:3159

    Google Scholar 

  47. Garrett KW, Rosenberg HM (1974) J Phys D: Appl Phys 7:1247

    Google Scholar 

  48. Katz HS, Milewski JV (1978) “Handbook of Fillers and Reinforcements”, Van Nostrand Reinhold, New York

    Google Scholar 

  49. Kalnin IL (1974) ASTM Spec Publ Symp Compos Reliab 580:560

    Google Scholar 

  50. Rosenberg HM (1977) NTIS AD-A040950

    Google Scholar 

  51. Knibbs RH, Baker DJ, Rhodes G (1971) SPI Ann Conf Reinf Plast 26:8-F

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag

About this chapter

Cite this chapter

Bigg, D.M. (1995). Thermal conductivity of heterophase polymer compositions. In: Thermal and Electrical Conductivity of Polymer Materials. Advances in Polymer Science, vol 119. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0021279

Download citation

  • DOI: https://doi.org/10.1007/BFb0021279

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58502-2

  • Online ISBN: 978-3-540-49015-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics